论文部分内容阅读
目的探讨微阵列数据的判别分析方法。方法首先采用偏最小二乘法对高维数据降维,然后再用Fisher’s线性判别。文中同时介绍了偏最小二乘法的基本原理、基本算法,讨论了成分数选择等问题,并以实际微阵列数据展示了其效果。结果偏最小二乘法降维不但实现了数据的可视化,而且取得了较好的后期判别效果。结论偏最小二乘法是一种新的实用的降维方法,可用于微阵列数据判别分析的前期降维。