论文部分内容阅读
针对类内干扰影响基于个体人员特征目标跟踪算法的精确性和鲁棒性问题,分析当前跟踪算法在个体人员跟踪方面存在的不足,提出了利用语言先验知识引导辅助跟踪器的方法。在视觉跟踪器的基础上增加语言引导分支,对跟踪目标产生注意力,从而减少对类内干扰的影响。利用位置置信度进行回归目标框定位的方法解决基于孪生网络目标跟踪算法中利用分类置信度定位候选目标框的局限性,实现跨模态信息融合提升特定目标跟踪的精度。为提升所提模型对特定人员目标跟踪的针对性,构建了跨模态的人员目标跟踪数据集用于训练和验证。实验表明:所提模型应用于