论文部分内容阅读
我们称以双曲线上任意一点P与双曲线两个焦点F1、F2为顶点组成的三角形为双曲线焦点三角形.显而易见,双曲线焦点三角形是一种特殊的三角形,三角形中的所有结论,在双曲线焦点三角形中肯定是成立的.另一个方面,由于双曲线焦点三角形是一种特殊的三角形,因此必有某些特殊的结论.本文从三角形中某些熟知的结论出发,类比得出双曲线焦点三角形的若干新结论,旨在抛砖引玉,引导读者自主深入地对双曲线焦点三角形进行研究.
We call a hyperbolic focus triangle with vertexes at any point on the hyperbola P and the two hyperbolic points F1 and F2.It is obvious that the hyperbolic focus triangle is a special kind of triangle and all the conclusions in the triangle, On the other hand, since the hyperbolic focus triangle is a special triangle, so there must be some special conclusions.This paper starts from some well-known conclusions in the triangle and draws hyperbolic A number of new conclusions of the focus triangle are designed to guide the reader to deeply and independently study the hyperbolic focus triangle.