论文部分内容阅读
为提高移动机器人在同步定位和地图构建(SLAM)中的定位精度,该文提出一种基于自组织可增长映射(GSOM)的仿生定位算法。该方法将位置细胞的激活特性和神经网络输出层神经元建立响应连接,通过GSOM神经网络构建空间的拓扑地图,利用感知距离信息实现位置细胞的激活响应从而估计机器人位置,以此还原机器人的运行路径。实验结果表明细胞间隔R对定位精度有较大影响,选取合适的细胞间隔能有效地减少神经网络的学习时间,提高定位精度,该文算法平均误差在0.153 m以内,定位精度达到90.243%,均优于原有算法。经验证