论文部分内容阅读
Galerkin有限元在处理含第二类边界条件的对流弥散方程时,针对对流项和弥散项有两种不同的格林积分变换,所得数值结果的精度也不同。一种方法是把对流和弥散项整体考虑实施格林积分转换(降低微分阶数,由二阶降成一阶),应用边界条件,得出变分方程;另一种处理方法是只对弥散项实施积分变换,应用边界条件,得出变分方程。以一维问题为参考,对两种方法的数值结果与解析解进行比较分析。