论文部分内容阅读
针对网络流量数据大、动态变化性高的问题,提出一种基于数据流挖掘技术——概念自适应快速决策树(CVFDT)的网络流量识别方法。CVFDT适合处理流动数据,随数据样本分布的变化更新模型,并能处理概念漂移。在具有12个最优属性特征的网络流数据集上进行实验,结果表明,与朴素贝叶斯方法相比,CVFDT方法具有较好的分类效果和稳定性。