基于熵权法的被动式超低能耗建筑评价

来源 :建筑节能(中英文) | 被引量 : 0次 | 上传用户:zhouhai3032
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着建筑业资源浪费现象的日渐突出,我国采取了一系列措施来降低生态环境的恶化。建筑业作为我国国民经济支柱型产业,绿色建筑的快速推行刻不容缓,其中被动式超低能耗建筑成为了新的发展趋势。基于此,为了探究被动式超低能耗建筑实际的节能性,更有效地促进其大力发展,在绿色建筑评价的基础上从建筑舒适度、生产技术、资源利用及经济合理性出发,有效地运用熵权法的原理,客观地得到相应的权重分配后使用模糊综合评价法对被动式超低能耗建筑进行评价,确定节能程度,又以实际案例验证评价体系的合理性,促进我国被动式超低能耗建筑评价体系研究。
其他文献
现有的网络表示学习算法主要是针对同质网络或异质网络设计的,而忽略了在推荐系统、搜索引擎和问答系统等领域出现的二分网络的特殊特征以及这类网络所携带着的非常丰富的属
时间序列事件聚类是研究事件分类及挖掘分析的基础。现有聚类方法多直接针对具有时间属性且结构复杂的持续事件聚类,未考虑聚类对象的转化,聚类准确性低且效率差。针对这些问
许多现实场景要求准确的脸部性别识别。深度卷积神经网络在正常状况下取得好的准确率,适用于大规模分类任务,但存在模型可解释性差、易丢失细节信息等问题,并且光照、姿势、表情等因素带来的不确定性会导致分类准确率较低。提出一种基于阴影集的二级分类模型。采用深度卷积神经网络对大规模图像集进行一阶段分类;结合阴影集理论,将图像分类结果划分为接收域、拒绝域和不确定域,得到不确定的脸部图像集,用传统方法进行二阶段分
目前大多的域自适应算法在源域与目标域具有相同类别的场景下,利用标签丰富的源域信息对标签稀少且分布相似的目标域数据进行迁移学习,取得了很多成果。然而,由于现实场景的复杂性和开放性,源域和目标域在类别空间上不尽相同,往往会各自包含一些类别未知且超出现有类别设定的样本。对于这样具有挑战性的开放集场景,传统的域自适应算法将无能为力。为了有效解决上述问题,提出一种面向开放集的模糊域自适应算法。该算法引用了不
视频质量评价(VQA)是以人眼的主观质量评估结果为依据,使用算法模型对失真视频进行评估。传统的评估方法难以做到主观评价结果与客观评价结果相一致。基于深度学习的视频质量评价方法无需加入手工特征,通过模型自主学习即可进行评估,对视频质量的监控和评价有重要意义,已成为计算机视觉领域的研究热点之一。首先对视频质量评价的研究背景和主要研究方法进行介绍;其次从全参考型和无参考型两方面介绍基于深度学习的客观质量
传统深度金字塔模型作为一种有效的行人检测算法备受关注,融合可变形部件模型和卷积神经网络模型,但特征提取部分使用的算法像素区域的大小不同,导致模型之间不能完全融合,在行人数量多、姿势复杂和有遮挡情况时的检测效果不理想。因此,提出一种基于规范化函数的深度金字塔模型(Norm-DP)算法,使用规范化函数融合可变形部件模型和卷积神经网络模型,直接从金字塔特征中提取正负样本,使用隐变量支持向量机进行模型训练
随着越来越多多模态数据的出现,跨模态检索引起了广泛的关注。跨模态检索面临一大挑战为模态鸿沟,为了解决数据的异构性问题,公共子空间学习的方法被提出。然而,大部分方法仅
轻质装配式建筑是一种具备可持续应用潜力的新型技术体系,然而当前“重建构”而“轻能量”的实践研究趋势已成为其发展的制约瓶颈。对此,立足于“表层能量调控”新视角,以轻
方面级情感分析是自然语言处理的热门研究方向之一,相比于传统的情感分析技术,基于方面的情感分析是细粒度的,能够判断句子中多个目标的情感倾向,能更加准确地挖掘用户对目标
为应对能源短缺问题,近零能耗建筑成为一种主流的发展趋势。太阳能作为地球能源的主要来源,对其进行有效应用可以大幅度解决建筑能耗问题。研究了世界范围内6个基于太阳能综