论文部分内容阅读
怎样培养和提高学生的运算能力?本文根据1990~1992年三年高考数学试题给予的启示,拟从以下方面谈一些粗浅看法(如无说明,以下用的均理科试卷题号——90年为A型卷)。 1.加强概念的教学与复习,是培养和提高运算能力的基础。在中学数学里,运用一些基本概念本身就能解决一些基本运算问题并能找到解题途径(例如绝对值,函数奇偶性、增减性定义,圆锥曲线定义等)。如92年的第(2)题:“如果函数y=sin(ωx)cos(ωx)的最小正周期是4π,那么常数ω为(A)4;(B)2;(C)1/2;(D)1/4”,只需对函数、最小正周期的概念清楚,就能迅速正确她作出解答(D)。再如90年文科第(24)题:“已知a>0,a≠1,解不等式,
How to cultivate and improve student’s mathematics ability? Based on the enlightenment given in the mathematics questions of the three-year college entrance examination from 1990 to 1992, this article plans to talk about some superficial views from the following aspects (if no description, the following science examination question number - 90 years Type A). 1. Strengthening the teaching and reviewing of concepts is the basis for cultivating and improving computing skills. In middle school mathematics, using some basic concepts can solve some basic computational problems and find solutions to problems (such as absolute values, function parity, definition of increase/decrease, conic curve definition, etc.). Such as 92 years of the (2) title: “If the function y = sin (ωx) cos (ωx) the minimum positive period is 4π, then the constant ω is (A) 4; (B) 2; (C) 1/2 (D) 1/4”, only the concept of the function, the minimum positive period is clear, and she can quickly and correctly answer (D). Another example is the 90th year of liberal arts (24) title: “a> 0, a≠1, solution inequality,