论文部分内容阅读
【摘要】在铁路工程中,浅埋隧道施工是很重要的一个环节,能不能够做好浅埋隧道施工的各个关键要点,决定了整个铁路工程的质量。文章分析了铁路浅埋隧道施工存在的问题 ,探讨了铁路浅埋隧道施工工艺及质量控制要点,提出了铁路浅埋隧道的关键施工技术。
【关键词】铁路工程;技术;浅埋隧道;施工
前言
随着人们对隧道围岩和支护问相互作用的认识的深入,对隧道开挖与支护尤其是浅埋、软弱地质条件下的开挖与支护及时得到了长足发展,但在铁路浅埋隧道开挖与支护施工中尚未有一套完整的施工工艺及措施,同时隧道的开挖与支护对整个隧道的质量安全具有关键性的作用,因而严格控制其施工技术及施工质量对隧道施工具有重要意义。
一、对铁路浅埋隧道施工存在问题的探讨
1、施工技术上可能引发的问题
由于隧道施工建设时间的紧迫,隧道设计形式上有时并不深入仔细研究要设计隧道的围岩地质特点,隧道设计上过于凭经验套图设计,从而使开挖后出现施工方法不适应或者变更较多。其次,有的勘察单位技术力量或者资质不够,但由于区域利益原因也参与隧道工程地质勘察,结果造成地质勘察不到位,工作不深入,资料不齐全,经常出现边设计、边勘察现象屡有发生,甚至出现无勘察资料盲目进行初步设计的情况。除此之外,对隧道建设中的关键技术,如隧道内的通风细部参数、运营监控设施、防灾救灾预案等研究系统深入程度不够,造成后期工程建设管理困难,甚至造成很大的浪费,以上各点施工技术问题都会给铁路隧道的安全带来严重威胁。
2、突发性的地质灾害对铁路隧道工程的影响
除了隧道的施工技术可能引发的质量缺陷,在施工的过程中,施工地点的突发性泥地质灾害的发生会给隧道工程的施工带来了更大的风险,由于开挖轮廓外侧的特大岩溶溶腔发生压溃腔或者塌方,另外洞口边坡突然垮塌,砸伤施工或社会车辆,这些严重的地质灾害往往无法做出正确的估计,对当地的施工人员的生命安全带来了严重的威胁并造成了巨大的经济损失。
3、隧道施工建设管理中的问题
首先,有些隧道建设项目的前期论证并不是十分充分,考虑因素不够周全。有的地方或企业为了拿下建设项目,进行夸大交通量和经济指标,有的地方为争建隧道,不按实事求是的态度科学进行工程可行性论证,强行施行建设方案,这些不合理不科学的建设施工都会给国家和地方的经济带来极大的负担。其次,业主单位对工程前期的地质勘查投入不够,对隧道主体工程以外如通风土建、消防设施、监控系统等设计未能事先统一考虑,这给后续隧道的工程建设带来很大的困难。同时,由于隧道施工的管理制度的不完善和专业监理工程师的缺乏,大型隧道的勘察设计阶段没有实行监理制度,施工阶段监理工作也存在某些问题严重影响铁路隧道的质量安全工作。
二、铁路浅埋隧道施工工艺及质量控制要点
1、地表注浆加固
其主要目的是为了防止在开挖过程中地表出现坍塌等现象而采取的措施,为了防止在注浆过程中出现冒浆现象一般在经过处理的地表设置20-30cm厚的钢筋混凝土层以作为注浆的止浆层并作为后期施工的防水面;注浆需设置孔口管,其一般采用钢花管,管身钻孔呈梅花型布置,孔径一般在8—10mm范围内,间距一般为1.5cm,全部注浆管安设完成后方可开始注浆以保证注浆不间断,开始时用1.5倍注浆终压对系统进行吸水试验检查是否正常,试运转时间一般为20min;浆料配置按照填料先轻后重的顺序添加,注浆过程中应先注最外侧两排孔,之后依次向里推进,每排孔施工时应先进行两端孔之后间隔交错灌注。
2、超前支护
一般隧道施工仅在洞口施作大管棚,洞内则一般采用小导管代替以防止隧道拱部坍塌及抑制地表沉降,小导管一般采用现场加工后用来喷射混凝土封闭岩面,其采用凿岩机钻孔后将小导管打入岩层,之后采用注浆泵压注水泥浆,施工中钻孔深度、角度及密度等均应符合设计要求;该阶段注浆是在地表加固注浆后的岩体内注浆,以进一步增强隧道围岩的抗渗性、完整性和承载强度,浆液为水泥浆液,施工中采取浆液由稀到浓逐步变换,在土层内注浆压力不小于2.0Mpa,其余地段注浆压力不小于1.0Mpa。注浆过程中位避免发生串浆现象一般在有多台注浆机同时施工的条件可采取多台同时注浆,若注浆机较少则可将注浆孔及时堵塞,待轮到该管注浆时再拔下堵塞物,并先用铁素或细钢筋将管内杂物清除干净并用高压风或水冲洗干净后再进行注浆;若发生进浆量很大但系统压力不升高则应调整浆液工作性能,缩短胶凝时间,采取小泵量低压力注浆或间歇式注浆以使浆液在裂隙中有相对停留的时间便于凝胶。
3、三台阶法施工
上台阶施工。用钻机将小导管从钢架腹部顶入后与钢架焊接在一起,其外插角一般为10-150,待上循环初期之后完毕后加注单液水泥浆,待其强度达到设计要求后方可进行开挖;开挖一般采取人工风镐配合挖掘机同时开挖以减少对围岩的扰动,开挖应严格遵守“短进尺、强支护”的原则,每循环进尺应控制在0.6m范围内,开挖完毕后应立即喷射混凝土进行封闭,喷射厚度一般为4cm,然后进行钢架架立、挂钢筋网施工,最后分层分片进行混凝土喷射至设计厚度;在退后掌子面2榀拱架处开始施作临时仰拱及扇形支撑,而挂网喷射混凝土只在竖撑和临时仰拱进行,竖撑采用一面关模喷混凝土,斜撑则只施作连接钢筋内外较差布置;中下台阶施工。该段施工一般采用挖掘机和装载机作业,一般先对开挖面前3-5m范围内围岩做超前坍孔以及时发现不良地质地段并采取加强措施防止工作面坍塌;对管式注浆锚杆、超前钢插管注浆时应控制好水灰比及注浆压力,以确保注浆饱满,工作中一般拱顶的注浆压力不超过2Mpa,拱脚注浆压力不低于1.5Mpa。
4、中间支护系统的拆除
拆除时间应结合其对后续工序的影响并同股沟围岩监控量测确定,应保证其变形处于允许范围内方可进行,其中临时支撑可在仰拱混凝土浇筑前一次性拆除,具体拆除长度应依据仰拱浇注长度确定,对中隔壁混凝土拆除时应防止其对初期支护形成的振动和扰动,一般采用风镐自上而下逐榀拆除钢支撑之间的喷射混凝土和临时支护与初期支护连接部位附着在钢架上的喷射混凝土,最后将钢构件采用气焊割断。
三、铁路浅埋隧道关键施工技术
1、降排水施工技术
施工降排水的标准是排堵结合、分段截留、综合治理,要防止夯管施工中导致地层液化和地下水土流失而在夯管施工前在隧道两侧地面布置两排深井降水,在三部台阶施工中则通常采用洞内轻型井点补充降水方式来防止出现涌水流砂现象;排水是在隧道开挖时将底部开挖成人字坡,两边靠近墙侧设置排水沟的方法,隧道下台阶施工则可采取用水泵将积水抽到临时集水井内,集水井一般设置2级水仓,从隧道各处抽来的水先排放到一级水仓内,再经过沉淀后自动流入二级水仓,之后再抽排到洞外排放。
2、夯管支护施工
暗挖断隧道一般采用大管棚超前支护其夯管,一般在隧道拱部一定范围内环向密排,在隧道进口端基坑内破除基坑端头的桩位的钻孔咬合桩成导向孔,之后用夯管锤将钢管锤入地层,长管棚管节分段坡口满焊连接,在夯管到位后在管内灌注细石混凝土以增强其刚度,施工中为防止钢管夯进过程中管口周围砂土流失而在管口部位用橡胶垫密封止水,在夯管夯进过程中如发生土体沉降则利用跟管钻进的方式补充注浆充填地层来补偿土体沉降损失。
结束语
路隧道浅埋段施工由于其自身特征及土质影响因素等原因在隧道施工中显得尤为重要,其施工中应严格按照施工工艺并结合工程所在地的地质情况进行科学组织施工,并加强施工监测以期实现施工目标,确保施工质量。
参考文献
[1]夏明耀.地下工程设计施工手册[M].北京:中国建筑工业出版社,2009
[2]韩秋官,陆忠良等.上海地铁一号线工程[M].上海:上海科协技术出版社.1998
[3]孙钧,侯学渊.地下结构[M].北京:科学出版社,2007
【关键词】铁路工程;技术;浅埋隧道;施工
前言
随着人们对隧道围岩和支护问相互作用的认识的深入,对隧道开挖与支护尤其是浅埋、软弱地质条件下的开挖与支护及时得到了长足发展,但在铁路浅埋隧道开挖与支护施工中尚未有一套完整的施工工艺及措施,同时隧道的开挖与支护对整个隧道的质量安全具有关键性的作用,因而严格控制其施工技术及施工质量对隧道施工具有重要意义。
一、对铁路浅埋隧道施工存在问题的探讨
1、施工技术上可能引发的问题
由于隧道施工建设时间的紧迫,隧道设计形式上有时并不深入仔细研究要设计隧道的围岩地质特点,隧道设计上过于凭经验套图设计,从而使开挖后出现施工方法不适应或者变更较多。其次,有的勘察单位技术力量或者资质不够,但由于区域利益原因也参与隧道工程地质勘察,结果造成地质勘察不到位,工作不深入,资料不齐全,经常出现边设计、边勘察现象屡有发生,甚至出现无勘察资料盲目进行初步设计的情况。除此之外,对隧道建设中的关键技术,如隧道内的通风细部参数、运营监控设施、防灾救灾预案等研究系统深入程度不够,造成后期工程建设管理困难,甚至造成很大的浪费,以上各点施工技术问题都会给铁路隧道的安全带来严重威胁。
2、突发性的地质灾害对铁路隧道工程的影响
除了隧道的施工技术可能引发的质量缺陷,在施工的过程中,施工地点的突发性泥地质灾害的发生会给隧道工程的施工带来了更大的风险,由于开挖轮廓外侧的特大岩溶溶腔发生压溃腔或者塌方,另外洞口边坡突然垮塌,砸伤施工或社会车辆,这些严重的地质灾害往往无法做出正确的估计,对当地的施工人员的生命安全带来了严重的威胁并造成了巨大的经济损失。
3、隧道施工建设管理中的问题
首先,有些隧道建设项目的前期论证并不是十分充分,考虑因素不够周全。有的地方或企业为了拿下建设项目,进行夸大交通量和经济指标,有的地方为争建隧道,不按实事求是的态度科学进行工程可行性论证,强行施行建设方案,这些不合理不科学的建设施工都会给国家和地方的经济带来极大的负担。其次,业主单位对工程前期的地质勘查投入不够,对隧道主体工程以外如通风土建、消防设施、监控系统等设计未能事先统一考虑,这给后续隧道的工程建设带来很大的困难。同时,由于隧道施工的管理制度的不完善和专业监理工程师的缺乏,大型隧道的勘察设计阶段没有实行监理制度,施工阶段监理工作也存在某些问题严重影响铁路隧道的质量安全工作。
二、铁路浅埋隧道施工工艺及质量控制要点
1、地表注浆加固
其主要目的是为了防止在开挖过程中地表出现坍塌等现象而采取的措施,为了防止在注浆过程中出现冒浆现象一般在经过处理的地表设置20-30cm厚的钢筋混凝土层以作为注浆的止浆层并作为后期施工的防水面;注浆需设置孔口管,其一般采用钢花管,管身钻孔呈梅花型布置,孔径一般在8—10mm范围内,间距一般为1.5cm,全部注浆管安设完成后方可开始注浆以保证注浆不间断,开始时用1.5倍注浆终压对系统进行吸水试验检查是否正常,试运转时间一般为20min;浆料配置按照填料先轻后重的顺序添加,注浆过程中应先注最外侧两排孔,之后依次向里推进,每排孔施工时应先进行两端孔之后间隔交错灌注。
2、超前支护
一般隧道施工仅在洞口施作大管棚,洞内则一般采用小导管代替以防止隧道拱部坍塌及抑制地表沉降,小导管一般采用现场加工后用来喷射混凝土封闭岩面,其采用凿岩机钻孔后将小导管打入岩层,之后采用注浆泵压注水泥浆,施工中钻孔深度、角度及密度等均应符合设计要求;该阶段注浆是在地表加固注浆后的岩体内注浆,以进一步增强隧道围岩的抗渗性、完整性和承载强度,浆液为水泥浆液,施工中采取浆液由稀到浓逐步变换,在土层内注浆压力不小于2.0Mpa,其余地段注浆压力不小于1.0Mpa。注浆过程中位避免发生串浆现象一般在有多台注浆机同时施工的条件可采取多台同时注浆,若注浆机较少则可将注浆孔及时堵塞,待轮到该管注浆时再拔下堵塞物,并先用铁素或细钢筋将管内杂物清除干净并用高压风或水冲洗干净后再进行注浆;若发生进浆量很大但系统压力不升高则应调整浆液工作性能,缩短胶凝时间,采取小泵量低压力注浆或间歇式注浆以使浆液在裂隙中有相对停留的时间便于凝胶。
3、三台阶法施工
上台阶施工。用钻机将小导管从钢架腹部顶入后与钢架焊接在一起,其外插角一般为10-150,待上循环初期之后完毕后加注单液水泥浆,待其强度达到设计要求后方可进行开挖;开挖一般采取人工风镐配合挖掘机同时开挖以减少对围岩的扰动,开挖应严格遵守“短进尺、强支护”的原则,每循环进尺应控制在0.6m范围内,开挖完毕后应立即喷射混凝土进行封闭,喷射厚度一般为4cm,然后进行钢架架立、挂钢筋网施工,最后分层分片进行混凝土喷射至设计厚度;在退后掌子面2榀拱架处开始施作临时仰拱及扇形支撑,而挂网喷射混凝土只在竖撑和临时仰拱进行,竖撑采用一面关模喷混凝土,斜撑则只施作连接钢筋内外较差布置;中下台阶施工。该段施工一般采用挖掘机和装载机作业,一般先对开挖面前3-5m范围内围岩做超前坍孔以及时发现不良地质地段并采取加强措施防止工作面坍塌;对管式注浆锚杆、超前钢插管注浆时应控制好水灰比及注浆压力,以确保注浆饱满,工作中一般拱顶的注浆压力不超过2Mpa,拱脚注浆压力不低于1.5Mpa。
4、中间支护系统的拆除
拆除时间应结合其对后续工序的影响并同股沟围岩监控量测确定,应保证其变形处于允许范围内方可进行,其中临时支撑可在仰拱混凝土浇筑前一次性拆除,具体拆除长度应依据仰拱浇注长度确定,对中隔壁混凝土拆除时应防止其对初期支护形成的振动和扰动,一般采用风镐自上而下逐榀拆除钢支撑之间的喷射混凝土和临时支护与初期支护连接部位附着在钢架上的喷射混凝土,最后将钢构件采用气焊割断。
三、铁路浅埋隧道关键施工技术
1、降排水施工技术
施工降排水的标准是排堵结合、分段截留、综合治理,要防止夯管施工中导致地层液化和地下水土流失而在夯管施工前在隧道两侧地面布置两排深井降水,在三部台阶施工中则通常采用洞内轻型井点补充降水方式来防止出现涌水流砂现象;排水是在隧道开挖时将底部开挖成人字坡,两边靠近墙侧设置排水沟的方法,隧道下台阶施工则可采取用水泵将积水抽到临时集水井内,集水井一般设置2级水仓,从隧道各处抽来的水先排放到一级水仓内,再经过沉淀后自动流入二级水仓,之后再抽排到洞外排放。
2、夯管支护施工
暗挖断隧道一般采用大管棚超前支护其夯管,一般在隧道拱部一定范围内环向密排,在隧道进口端基坑内破除基坑端头的桩位的钻孔咬合桩成导向孔,之后用夯管锤将钢管锤入地层,长管棚管节分段坡口满焊连接,在夯管到位后在管内灌注细石混凝土以增强其刚度,施工中为防止钢管夯进过程中管口周围砂土流失而在管口部位用橡胶垫密封止水,在夯管夯进过程中如发生土体沉降则利用跟管钻进的方式补充注浆充填地层来补偿土体沉降损失。
结束语
路隧道浅埋段施工由于其自身特征及土质影响因素等原因在隧道施工中显得尤为重要,其施工中应严格按照施工工艺并结合工程所在地的地质情况进行科学组织施工,并加强施工监测以期实现施工目标,确保施工质量。
参考文献
[1]夏明耀.地下工程设计施工手册[M].北京:中国建筑工业出版社,2009
[2]韩秋官,陆忠良等.上海地铁一号线工程[M].上海:上海科协技术出版社.1998
[3]孙钧,侯学渊.地下结构[M].北京:科学出版社,2007