基于CS的Hopfield神经网络数字识别应用

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:gu22540
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
介绍了布谷鸟搜索(cuckoo search,CS)和Hopfield神经网络的基本原理,研究了基于Hopfield神经网络的数字识别应用.针对Hopfield网络权值在数字识别时易陷入局部最优,提出将CS引入Hopfield神经网络的解决方法.利用CS对复杂、多峰、非线性极不可微函数的全局搜索能力,使Hopfield网络在较高噪信比的情况下仍保持较高的联想成功率,并进行了仿真.仿真结果表明,该方法识别数字的效果更佳.
其他文献
在复杂的多态系统中,系统可靠性非常重要,最常见的是冷热备份模式来实现系统的可靠性.本文中我们提出了混合冗余备份模式,计算复杂系统的可靠性和任务成本,解决复杂系统中的
软件测试技术中,高效的测试用例生成能够大幅简化测试工作,提高测试效率,节省软件开发成本.遗传算法作为一种高效的搜索寻优算法已被广泛应用到测试用例自动生成的研究中,然
现有数据流分类算法大多使用有监督学习,而标记高速数据流上的样本需要很大的代价,因此缺乏实用性.针对以上问题,提出了一种低代价的数据流分类算法2SDC.新算法利用少量已标
与传统K-Means相比,加权闵可夫斯基K-Means(MWK-Means)需要自适应获取特征权重并选择合适的闵可夫斯基指数.无监督选取指数策略是计算每个指数的三种尺度值,根据三种尺度的选取标
Zig Bee协议默认的分布式地址分配算法(DAAM)存在孤立点问题,而没有提出好的解决方案.提出一种基于代理节点的Zig Bee地址分配算法ABAAM,可以有效的降低因为网络预设参数和节
在研究了Struts框架的基本原理和运用MVC设计模型来开发Web应用的过程后,并结合报表编辑系统的实际需求,决定在报表编辑系统中采用Struts框架解决MVC模型架构Web应用的问题.本文
为了有效提高噪声背景下的人脸表情识别性能,提出一种基于压缩感知的鲁棒性人脸表情识别方法.先通过对腐蚀的测试样本表情图像进行稀疏表示,再利用压缩感知理论寻求其最稀疏的解,然后采用求得的最稀疏解信息实现人脸表情的分类.在标准的Cohn-Kanade表情数据库的实验测试结果表明,该方法取得的人脸表情识别性能优于最近邻法、支持向量机以及最近邻子空间法.可见,该方法用于人脸表情识别,识别效果较好,鲁棒性较高
基于特征点的图像匹配被广泛应用于图像配准、目标识别与跟踪领域,目前,两阶段匹配(即先粗匹配,后精匹配)是最常用的方法,然而,两阶段匹配存在两方面的问题,一方面,粗匹配阶段对精匹配阶段的影响是不可逆的,即粗匹配的效果决定了精匹配的最优精度;另一方面,精匹配得到的后验知识没能反馈给粗匹配阶段,以修正粗匹配结果.为此,提出一种基于迭代修正的图像特征点匹配算法,该算法将精匹配得到的后验知识反馈给粗匹配阶段
提出了一种基于数值分析的异常扫描行为监测方法, 以Netflow网管数据为基础, 设计开发了监测系统, 实现了对网络中主流网络蠕虫病毒、IRC僵尸木马的传播爆发以及黑客恶意扫描
云计算中的资源分配一直都是研究的重点,提出了一种基于改进的蝙蝠算法的云计算资源分配方法.在蝙蝠算法中引入差分遗传算法,通过变异,交叉和选择等操作避免个体陷入局部最优