论文部分内容阅读
苏州是江苏省著名的风景旅游城市,近几十年来经济发展较为迅速,市区生活垃圾的产生量连年增长。根据有关统计资料,2007年,苏州市七子山垃圾填埋场每日填埋生活垃圾约1500t,另外还有每日约1000t的垃圾,由光大垃圾焚烧厂处置。根据日本有关统计,目前日本生活垃圾产生量约每人每天1kg。随着苏州市民生活水平的进一步提高以及生活垃圾收集范围的进一步扩大,苏州市生活垃圾的处理量还将进一步增长。
填埋和焚烧是我国目前生活垃圾的主要处置方法,它们对环境造成的影响是不一样的。本文利用国际标准化组织(ISO)提供的生命周期评价(LCA)方法,评估苏州市现存的两种生活垃圾处置方法对环境的影响。
杨建新、王如松等人指出产品生命周期评价将成为21世纪最有效的环境管理工具之一。目前发达国家已把LCA用于产品设计,成了CAD的一个组成部分,还用于环境标志,用于衡量一个公司的环境表现(Environmental Performance)。与发达国家相比,我国在LCA应用上还存在较大差距,但是这些年来已经出现了一些重要的研究成果。文献[2]主要依据IS014041的规定,对产品进行了清单分析;文献[3~6]对不同的产品进行了生命周期评价。
本文收集了苏州市在垃圾填埋和垃圾焚烧过程中的有关数据,依据IS014041的规定,建立垃圾填埋和垃圾焚烧的生命周期清单。我们使用日本产业技术研究所LCA研究中心开发的生命周期评价软件AIST-LCA Ver.4,对上述两种处置方法的环境影响做出了评价。
1 苏州市垃圾填埋的生命周期清单分析
苏州七子山垃圾填埋场于1993年建成一直运行至今,是苏州市唯一的垃圾填埋设施。苏州七子山垃圾填埋场最近又建成了二期工程,并将垃圾填埋场产生的沼气引往沼气发电装置,自2006年7月起已经开始发电。
1.1研究对象的功能单位与系统边界
本节以苏州城市生活垃圾填埋为研究对象。垃圾填埋功能单位为填埋1t城市生活垃圾。本研究系统主要包括垃圾收集、垃圾运输、垃圾填埋以及利用垃圾产生的沼气发电等几部分,系统中不包括垃圾填埋场的建造阶段。
1.2苏州市垃圾填埋的生命周期清单
苏州居民每天的生活垃圾通常由专门的人员使用人力车、部分使用小型动力车运送到垃圾中转站。苏州各区有专门的机构,负责用汽车把垃圾从中转站运送到七子山垃圾填埋场。
根据对苏州市金阊区垃圾运输能耗数据的分析,我们得到,苏州市目前每吨垃圾运输油耗为2.23L。垃圾填埋需要推土机等机械作业,为了防止渗漏,还需要HDPE等材料。为了消灭害虫,垃圾填埋场普遍使用农药。表1列出了苏州七子山垃圾填埋场填埋每吨垃圾所需要消耗的物品及其数量。
垃圾填埋后,排放的气体污染物主要有CO2和甲烷等;水污染物主要有渗滤液和洗车水中的COD、SS、NH3-N以及一些重金属等。
大气污染物CO2和甲烷等在整个生命周期中排放量无法测量,只能采用计算数据。我们采用收集的苏州市垃圾组分数据,计算获得垃圾中DOC,采用IPCC推荐模型,计算CO2和甲烷的排放量。
式中,ECH1一垃圾填理场的甲烷总排放量,t;MSW-城市垃圾量,t;η-城市垃圾填埋率,%;DOC-采用上述计算结果;r-垃圾中可降解有机碳的分解百分率(IPCC推荐为77%)。取上述计算结果最近三年的平均值,CH4和c02的排放量如表2所列。其中H2s的含量按0.2%计算。
苏州七子山垃圾填埋场的沼气收集后用于发电。沼气发电项目配备两台1250kW内燃发电机组,于2006年7月开始正式发电。发电以后,一部分甲烷被燃烧,生成CO2,并产生了微量的Nox和VOC。垃圾填埋场填埋每吨垃圾产生的大气污染物量列于表2。
垃圾渗沥液水量和污染物的浓度变化很大,主要取决于所填埋废弃物的种类、污染物的溶出速度和化学作用、降雨状况、填埋场龄以及填埋结构等,其中填埋场龄最为重要。随着垃圾填埋场场龄的增加,渗沥液的可生化降解性不断下降。对于新的填埋场(一般小于5a),其渗沥液的性质属于低pH、BOD5、COD和BOD5/COD值,较高的氨氮和重金属离子浓度;对于中、老龄的填埋场(一般大于10a),其渗沥液pH呈中性或弱碱性,低BOD5和COD,低BOD5/COD值,较低重金属离子浓度,更高的氨氮浓度。
由于七子山填埋场已经工作十几年了,因此包含了处于各个阶段的垃圾,其析出的污染物量能够较好地代表垃圾各个阶段的平均析出情况。
渗滤液和洗车水中的污染物COD、SS、和NH3-N。渗滤液排放的污染物由2004年和2005年的月平均值再求平均計算获得。洗车水根据2005年的平均值获得。为了分析通过渗滤液排放的重金属数量,我们对渗滤液中的重金属含量进行了7天的采样分析。表3列出了填埋It垃圾所排放的水污染物的量。
2 苏州市垃圾焚烧的生命周期清单分析
苏州垃圾焚烧发电厂在苏州市光大环保静脉产业园内,位于七子山生活垃圾填埋场西北侧,一期工程建设规模为日处理垃圾1000t,年焚烧处理生活垃圾33.3万t。焚烧炉、烟气处理、自动化控制和在线监测等核心设备全部进口国外知名公司产品,2006年6月20日正式建成投产发电。生活垃圾焚烧发电厂二期建成后,处理规模可达1500t/日。
2.1垃圾焚烧排放清单的功能单位和边界条件
功能单位:此排放清单的功能单位定义为焚烧的每吨垃圾。
边界条件:垃圾焚烧排放清单的边界包括垃圾收集、垃圾运输以及垃圾焚烧、垃圾灰填埋四个过程。垃圾焚烧设施的建设过程不包括在边界之内。
2.2苏州市垃圾焚烧的生命周期清单
垃圾焚烧的主要物耗包括:垃圾运输的油耗、以及焚烧中点火的柴油,焚烧过程中为了处理废气的石灰和活性炭,还有部分水的消耗。我们把收集的一年数据取平均后,每吨垃圾焚烧的物耗如表4所列。
垃圾焚烧时排放的大气污染物主要有CO2、CO、SO2和极微量的PCDDs。垃圾焚烧CO2的排放量根据垃圾的含碳量计算获得,其他大气污染物利用现场监测数据,结果列于表5。垃圾焚烧前需要在垃圾贮坑内发酵,并析出垃圾中的渗滤液。渗滤液中的污染物主要包括有机物以及一些重金属。根据收集和监测的数据,我们得到每吨垃圾通过渗滤液排放的污染物如表6所列。根据现场统计资料,每吨垃圾焚烧后可发电287KWh。另外产生废渣200kg,送七子山填埋;灰6kg,送危险品填埋场填埋。
填埋和焚烧是我国目前生活垃圾的主要处置方法,它们对环境造成的影响是不一样的。本文利用国际标准化组织(ISO)提供的生命周期评价(LCA)方法,评估苏州市现存的两种生活垃圾处置方法对环境的影响。
杨建新、王如松等人指出产品生命周期评价将成为21世纪最有效的环境管理工具之一。目前发达国家已把LCA用于产品设计,成了CAD的一个组成部分,还用于环境标志,用于衡量一个公司的环境表现(Environmental Performance)。与发达国家相比,我国在LCA应用上还存在较大差距,但是这些年来已经出现了一些重要的研究成果。文献[2]主要依据IS014041的规定,对产品进行了清单分析;文献[3~6]对不同的产品进行了生命周期评价。
本文收集了苏州市在垃圾填埋和垃圾焚烧过程中的有关数据,依据IS014041的规定,建立垃圾填埋和垃圾焚烧的生命周期清单。我们使用日本产业技术研究所LCA研究中心开发的生命周期评价软件AIST-LCA Ver.4,对上述两种处置方法的环境影响做出了评价。
1 苏州市垃圾填埋的生命周期清单分析
苏州七子山垃圾填埋场于1993年建成一直运行至今,是苏州市唯一的垃圾填埋设施。苏州七子山垃圾填埋场最近又建成了二期工程,并将垃圾填埋场产生的沼气引往沼气发电装置,自2006年7月起已经开始发电。
1.1研究对象的功能单位与系统边界
本节以苏州城市生活垃圾填埋为研究对象。垃圾填埋功能单位为填埋1t城市生活垃圾。本研究系统主要包括垃圾收集、垃圾运输、垃圾填埋以及利用垃圾产生的沼气发电等几部分,系统中不包括垃圾填埋场的建造阶段。
1.2苏州市垃圾填埋的生命周期清单
苏州居民每天的生活垃圾通常由专门的人员使用人力车、部分使用小型动力车运送到垃圾中转站。苏州各区有专门的机构,负责用汽车把垃圾从中转站运送到七子山垃圾填埋场。
根据对苏州市金阊区垃圾运输能耗数据的分析,我们得到,苏州市目前每吨垃圾运输油耗为2.23L。垃圾填埋需要推土机等机械作业,为了防止渗漏,还需要HDPE等材料。为了消灭害虫,垃圾填埋场普遍使用农药。表1列出了苏州七子山垃圾填埋场填埋每吨垃圾所需要消耗的物品及其数量。
垃圾填埋后,排放的气体污染物主要有CO2和甲烷等;水污染物主要有渗滤液和洗车水中的COD、SS、NH3-N以及一些重金属等。
大气污染物CO2和甲烷等在整个生命周期中排放量无法测量,只能采用计算数据。我们采用收集的苏州市垃圾组分数据,计算获得垃圾中DOC,采用IPCC推荐模型,计算CO2和甲烷的排放量。
式中,ECH1一垃圾填理场的甲烷总排放量,t;MSW-城市垃圾量,t;η-城市垃圾填埋率,%;DOC-采用上述计算结果;r-垃圾中可降解有机碳的分解百分率(IPCC推荐为77%)。取上述计算结果最近三年的平均值,CH4和c02的排放量如表2所列。其中H2s的含量按0.2%计算。
苏州七子山垃圾填埋场的沼气收集后用于发电。沼气发电项目配备两台1250kW内燃发电机组,于2006年7月开始正式发电。发电以后,一部分甲烷被燃烧,生成CO2,并产生了微量的Nox和VOC。垃圾填埋场填埋每吨垃圾产生的大气污染物量列于表2。
垃圾渗沥液水量和污染物的浓度变化很大,主要取决于所填埋废弃物的种类、污染物的溶出速度和化学作用、降雨状况、填埋场龄以及填埋结构等,其中填埋场龄最为重要。随着垃圾填埋场场龄的增加,渗沥液的可生化降解性不断下降。对于新的填埋场(一般小于5a),其渗沥液的性质属于低pH、BOD5、COD和BOD5/COD值,较高的氨氮和重金属离子浓度;对于中、老龄的填埋场(一般大于10a),其渗沥液pH呈中性或弱碱性,低BOD5和COD,低BOD5/COD值,较低重金属离子浓度,更高的氨氮浓度。
由于七子山填埋场已经工作十几年了,因此包含了处于各个阶段的垃圾,其析出的污染物量能够较好地代表垃圾各个阶段的平均析出情况。
渗滤液和洗车水中的污染物COD、SS、和NH3-N。渗滤液排放的污染物由2004年和2005年的月平均值再求平均計算获得。洗车水根据2005年的平均值获得。为了分析通过渗滤液排放的重金属数量,我们对渗滤液中的重金属含量进行了7天的采样分析。表3列出了填埋It垃圾所排放的水污染物的量。
2 苏州市垃圾焚烧的生命周期清单分析
苏州垃圾焚烧发电厂在苏州市光大环保静脉产业园内,位于七子山生活垃圾填埋场西北侧,一期工程建设规模为日处理垃圾1000t,年焚烧处理生活垃圾33.3万t。焚烧炉、烟气处理、自动化控制和在线监测等核心设备全部进口国外知名公司产品,2006年6月20日正式建成投产发电。生活垃圾焚烧发电厂二期建成后,处理规模可达1500t/日。
2.1垃圾焚烧排放清单的功能单位和边界条件
功能单位:此排放清单的功能单位定义为焚烧的每吨垃圾。
边界条件:垃圾焚烧排放清单的边界包括垃圾收集、垃圾运输以及垃圾焚烧、垃圾灰填埋四个过程。垃圾焚烧设施的建设过程不包括在边界之内。
2.2苏州市垃圾焚烧的生命周期清单
垃圾焚烧的主要物耗包括:垃圾运输的油耗、以及焚烧中点火的柴油,焚烧过程中为了处理废气的石灰和活性炭,还有部分水的消耗。我们把收集的一年数据取平均后,每吨垃圾焚烧的物耗如表4所列。
垃圾焚烧时排放的大气污染物主要有CO2、CO、SO2和极微量的PCDDs。垃圾焚烧CO2的排放量根据垃圾的含碳量计算获得,其他大气污染物利用现场监测数据,结果列于表5。垃圾焚烧前需要在垃圾贮坑内发酵,并析出垃圾中的渗滤液。渗滤液中的污染物主要包括有机物以及一些重金属。根据收集和监测的数据,我们得到每吨垃圾通过渗滤液排放的污染物如表6所列。根据现场统计资料,每吨垃圾焚烧后可发电287KWh。另外产生废渣200kg,送七子山填埋;灰6kg,送危险品填埋场填埋。