论文部分内容阅读
提出一种基于小波理论和神经网络技术的柴油机振动诊断方法,首先对柴油机的振动信号进行小波分析,提取相应特征向量,然后将振动样本的特征向量作为RBF神经网络的输入参数,以故障类别作为输出参数训练该网络。训练后的神经网络可以利用测量的振动信号来判断柴油机的故障状况。试验及仿真证明该方法在柴油机振动诊断中是有效可行的,对其它复杂机械的振动诊断同样具有参考价值。