论文部分内容阅读
为解决旋转机械振动信号复杂且难以提取有效故障特征的问题,提出了一种经验模态分解(empirical mode decomposition,简称EMD)、奇异值分解(singular value decomposition,简称SVD)和深度卷积网络(Convolutional Neural Network,简称CNN)相结合的故障诊断方法。首先,通过EMD方法将故障信号分解成若干个固有模态分量(intrinsic mode function,简称IMF),构造时域与频域空间状态矩阵;其次,利用SVD方法对