论文部分内容阅读
针对船舶碰撞危险度具有模糊性、不确定性等特点,依据模糊理论方法建立的船舶碰撞危险度的数学模型,直接采用来船航速、来船航向、来船对本船的相对舷角和来船对本船距离作为神经网络的输入,采用Levenberg-Mrquardt优化算法这种改进的BP神经网络进行训练和仿真,并与标准BP算法和动量BP算法进行比较,发现经过改进的网络求得碰撞危险度比标准BP算法和动量BP算法具有更好的效果,网络能够更有效收敛,大大提高了网络的收敛速度和泛化能力。