论文部分内容阅读
针对混合蛙跳算法(SFLA)更新策略会陷入局部最优、降低收敛速度的问题,提出一种自适应阈值更新策略。根据盲源分离中常用峭度和负熵作为非高斯性的度量,但峭度对野值敏感,影响算法性能,研究一种基于负熵准则的采用粒子群优化(PSO)算法和混合蛙跳算法的盲源分离方法。仿真结果表明,基于负熵的盲分离算法性能优于基于峭度的盲分离算法,基于SFLA的盲分离算法性能优于基于PSO的盲分离算法。