论文部分内容阅读
室内移动机器人使用传统视觉SLAM算法在动态场景下进行位姿估计时精度低、鲁棒性差,其主要原因是错误地将运动的特征点加入了相机位姿计算.为了解决这一问题,本文将特征点分为静态特征点、状态未知点、可疑静态特征点、动态特征点和错误匹配点.其中,静态特征点使用严格的几何约束进行筛选,并将状态未知点使用多帧的观测信息区分为可疑静态特征点、动态特征点以及错误匹配点,并进行卡尔曼滤波.最后,将静态特征点、可疑静态特征点和动态特征点一起加入位姿优化.利用TUM数据集,在室内存在运动物体的场景下进行实验.结果表明,所