论文部分内容阅读
在低照度环境下采集的图像往往亮度不足,导致在后续视觉任务中难以有效利用。针对这一问题,过去的低照度图像增强方法大多在极度低光场景中表现失败,甚至放大了图像中的底层噪声。为了解决这一难题,本文提出了一种新的基于深度学习的端到端神经网络,该网络主要通过空间和通道双重注意力机制来抑制色差和噪声,其中空间注意力模块利用图像的非局部相关性进行去噪,通道注意力模块用来引导网络细化冗余的色彩特征。实验结果表明,与其他主流算法相比,本文方法在主观视觉和客观评价指标上均得到了进一步提高。