三维电容层析成像传感器优化及循环流化床提升管轴向流动成像

来源 :化工进展 | 被引量 : 0次 | 上传用户:bendanlxq
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
由于多相流流动的复杂性和不透明性,对气固两相流循环流化床提升管轴向行为研究一直是亟待解决的难题.本文采用八截面三十二电极的三维电容层析成像(ECT)传感器,每个截面包含4个电极,分析了在不同轴径比(轴向长度与传感器内径之比)和不同电极覆盖率下的成像情况.仿真结果表明,当轴径比为8.3、电极覆盖率达到69%时,在保证成像质量的情况下达到最大的轴径比.开发了一套32通道的三维ECT数据采集系统用于流化床提升管流动成像,成像速度为每秒120帧.成像结果表明,当流化气速Uf为2.34m/s时,段塞流在加速上升到一定高度后,由于气速和颗粒速度差降低带来的曳力减小而破裂.本系统可以有效揭示循环流化床(CFB)的三维动态特征.
其他文献
针对目前油田高含水油水两相流流动复杂、通常存在于密闭管道难于在线检测等问题,本文提出了一种基于管内相分隔的高含水油水两相流双参数测量方法.通过旋流器将难以测量的细小、分散油滴集中到管道中心,形成油芯-水环的相分隔状态,引入轴向压差和径向压差,建立两个差压之比的实验关联式,结合电磁流量计和差压方法测量总流量和含水率.通过数值模拟方法对差压的取压位置进行了优化设计,并开展油水两相流双参数测量实验.实验结果表明,在84%~100%高含水率范围内,油水总流量和含水率的测量误差几乎都在±5%以内.这为高含水油水两相
利用一种改进的高时空分辨率相移干涉仪,探究跨/超临界射流过程中不同于亚临界条件下的射流特性,测量了不同跨/超临界射流过程中相变化界面的瞬态密度场.相移干涉仪采用马赫-曾德尔型干涉仪的基本排布,通过像素阵列掩模法实现了传感器同时获得多相位的干涉图像,空间分辨率可达3.45μm,时间分辨率可达0.001s.实验中通过相移干涉仪实现了对液相-超临界相、超临界-气相射流过程的可视化研究,实时定量化测量了瞬态密度场.结果表明,液相流体射流到超临界环境中(pr=1.01,Re=79.738),射流界面不会产生类似亚临
长距离油气输运管道运行工况复杂,事故频发,冲蚀腐蚀是导致管道局部失效的典型问题之一,受多因素作用影响.为探究管道钢冲蚀腐蚀多因素影响机制,通过全因子实验设计方法,量化比较了包含不同颗粒浓度、冲击角度、氯离子浓度和pH的多变量系统中单一因素和因素间相互作用对X80管道钢冲蚀腐蚀损失的影响效应,并分析了它们的显著性与方向性.统计学分析结果表明,4个单一因素对冲蚀腐蚀损失均有显著影响,其中颗粒浓度和氯离子浓度与冲蚀腐蚀损失正相关,pH和冲击角度与冲蚀腐蚀损失负相关;因素间协同作用中只有颗粒浓度与氯离子浓度之间的
针对气液两相环状流液膜参数溯源问题,设计了一种液膜在线提取装置和基于液膜质量流量测量的夹带率测量方法.该装置利用超声波测距传感器对储液箱液位进行实时监测并反馈至控制系统,利用单片机控制抽气泵开关实现对环状流多孔渗水介质管段内外差压调节控制液膜析出速率,使用换向器实现计量和废液管路切换并记录两次切换之间的时间间隔.利用精密电子天平对取出液膜进行称重测量,结合记录时间和液相质量流量计测量结果实现液膜质量流量和液滴夹带率等参数的测量.在小口径高精度气液两相流模拟装置进行了75组实流验证实验,并结合两种典型夹带率
环雾状流广泛存在于石油化工领域,其内部流场测量具有重要意义.本文结合光学图像法和高速摄影技术对撞针式喷嘴的雾化特性进行了测量分析,以此为基础对基于雾化混合的环雾状流中夹带液滴特性开展了实验研究.利用高速摄影技术对喷雾进行可视化,采用单帧单曝光法对液滴尺寸和速度信息进行提取.研究发现,液滴速度随轴向距离增大呈衰减趋势,且相同轴向距离(约在径向位置10mm处)条件下,速度达到峰值;液滴索泰尔平均直径(SMD)随喷嘴孔径d0的增大而增大,并与液相质量流量ml和喷嘴上下游压差?p均呈负相关;另外,在环雾状流环境中
基于计算流体动力学(CFD)方法,采用大涡模拟(LES)和拉格朗日颗粒追踪技术计算了Rushton涡轮搅拌槽内流场特性及三种St颗粒的运动行为.平均流场(切向速度、轴向速度和径向速度)、颗粒速度及浓度分布方面与实验值的吻合度较好,验证了数值模拟的可靠性.结果表明,搅拌流场及颗粒运动均呈现循环流特性,当转速N=313r/min不变时,St=0.24的小颗粒几乎实现了均匀分布;而St=37.3的大颗粒与流体的跟随性较差,底部沉积率较高,容器顶部会出现一定的颗粒空白区.叶轮附近产生一系列的湍流涡结构,并且由于剧
由于电阻层析成像(electrical resistance tomography,ERT)技术具有非扰动、无辐射、可视化等优点,本文基于该技术提出了一套能够实现锂离子电池阴极浆料粒子分布特性的可视化在线监测系统.ERT监测系统包括阻抗分析仪(impedance analyzer,IM3570,HIOKI)、计算机(PC)、多路复用器(34970A,Agilent)和8电极传感器.在实验中,搅拌器搅拌速度为720r/min,搅拌时间在360s以内,激励电流的频率为f=1kHz,幅值为1mA.电流输入采用相
显微成像条件下的三维流场测量是微通道流动等研究的基础,其难点在于颗粒深度位置的测量.由于显微镜头景深极小,成像时通道内大部分颗粒处于离焦状态.本文首先基于几何光学原理分析了显微成像前后离焦不对称的特点,随后基于Inception V3卷积神经网络搭建了颗粒深度预测模型,并通过光线追踪方法生成粒径1~10μm的10种颗粒在深度范围?50~50μm内的仿真显微图像,应用深度预测模型对其进行训练及预测,颗粒深度预测结果显示1~3μm颗粒的相对误差在±13%以内,4~10μm颗粒的相对误差小于±5%.最后在微通道
颗粒与壁面的惯性碰撞机制是换热管壁积灰的主要原因之一,且国内外对微米级颗粒撞击壁面过程的研究较少.本文对单颗粒撞击颗粒覆层的碰撞过程进行了数值计算.首先通过建立颗粒与壁面法向碰撞的动力学模型,对颗粒与壁面(或颗粒)之间的碰撞过程进行研究.对于颗粒与壁面(或颗粒)的碰撞过程,无阻尼耗散下,理论计算结果与数值计算结果一致.相对于仅考虑黏附剥离功的情况,阻尼耗散的存在使得临界捕集速度增加.在此基础上,研究了颗粒与颗粒覆层撞击后的颗粒运动情况.颗粒-颗粒(黏附)-壁面的法向碰撞过程由于黏附颗粒的加入变得更加复杂.
多数机械设备如换热器、汽轮机、燃气轮机等内部流场均具有内部空间狭小、流场流动复杂的特点.目前对于该类流场测量多采用二维粒子图像测速(PIV)的方法,难以反映真实的流场速度分布;同时多数三维流场测量系统设备复杂且昂贵,难以应用到狭小的空间测量中.因此本文搭建了一套基于三台相机的三维流场测量系统,针对某矩形水流管道,应用层析PIV技术对圆柱尾迹的低速流场进行了测量,成功观察并重建了圆柱产生的三维卡门涡街流场.测量区域约为30mm×30mm×5mm,三维空间分辨率达到20voxels/mm,重投影误差小于0.5