论文部分内容阅读
为了更好地对图像进行超分辨率重建,对传统的正则化方法进行了改进,提出了更符合实际的新模型:加性广义高斯白噪声与各向异性正则化项。为求得新模型的最优解,引入免疫进化算法并做如下改进:引入记忆单元群,使算法并行地运行在两个抗体群上;提出一种疫苗的自适应选取及接种方法;将混沌算子作为防僵化算子嵌入。分析与实验表明,基于新模型重建的图像不仅对噪声的类型与方差具有稳健性,而且重建图像的信噪比改善量(ISNR)比传统模型高1.5 dB左右,同时提出的改进免疫进化算法能够更快收敛,所需步数仅是遗传算法的8%,传统