单输入单输出大规模动力系统模型的简化方法

来源 :应用数学与计算数学学报 | 被引量 : 0次 | 上传用户:xiaogaojuanJUAN
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
提出的简化单输入单输出大规模动力系统的一种新方法是系统在等式约束最小二乘法的一种推广.这种方法是一种投影方法,其投影依赖于奇异分解和Krylov子空间.通过平移算子,使得降阶模型与原模型的前r+i模准确地匹配,剩余的高阶模利用拉格朗日乘子法进行等式约束最小二乘的形式逼近原模.通过拉格朗日乘子法来求解具有约束条件的最小二乘问题,让推导出来的用于模型简化的投影变换矩阵更为简便.
其他文献
针对非线性不等式约束优化问题提出一种新的光滑精确罚函数,并证明这种类型的光滑罚函数对求解非线性约束优化问题具有好的性质.基于这个光滑精确罚函数,文中设计罚函数算法,并证
主要研究数值方法能否再现随机时滞微分方程(stochastic delay differential equation,SDDE)解的渐近均方有界性.首先,探讨了使得方程的解均方有界的充分条件.同时,证明了在扩散项与
利用q-微积分的性质,得到时间测度q上的Gronwall不等式;并利用该推广的不等式分别讨论带有Riemann-Liouville和Caputo分数阶导数的q-微分方程的解对分数阶导数的阶数和初值的
松弛型二级多分裂法是解线性代数方程组的一种并行迭代算法,其松弛因子在(0,1]区间的下松弛收敛结果是已知的.证明了松弛型二级多分裂法松弛因子大于1的上松弛收敛性,改进了有关下
以切比雪夫偏差点为插值点,利用切比雪夫多项式逼近理论和高斯.洛巴托.切比雪夫求积公式,构造了一个6级6阶的隐式Runge—Kutta方法.理论分析发现,该算法具有良好的稳定性——A0稳定
带状矩阵以及带状矩阵Kronecker积结构的矩阵函数与逆矩阵的衰减界的研究是近些年非常热门的研究方向,其在数值分析、信号处理等领域有非常重要的应用.主要研究Kronecker积结构
研究磁流体力学方程组一维活塞问题,证明了当活塞速度是一个常数的扰动时,其激波解的整体存在性.通过改进的Glimm格式先构造问题的近似解,然后对基本波的相互作用作出精确的估计,
主要研究了常循环码的自对偶码.给出了s-Hermitian自对偶码的定义,并进一步给出了s-Hermitian自对偶常循环码的的充要条件.
利用函数f(t)=‖|AtXB1-t|r‖·‖|A1-tXBt|r‖在区间[0,1]上的凸性对算子的柯西-施瓦茨范数不等式给出了一些改进.
伪谱是解释非正规矩阵或算子行为的一个有用工具.矩阵伪谱计算的一个常用方法是grid-SVD算法,实现这个算法需要在每一个网格点处作奇异值分解(SVD);另外一个计算方法是基于Schu