论文部分内容阅读
为提高对细粒度图像分类的准确性和分类速度,提出基于改进VGG16和迁移学习的图像分类方法。首先从kaggle平台中获取十种不同猴子数据集,并对数据集进行标准化处理,包含图片去椒盐噪声、将数据集转换为TensorFlow中提供的统一TFRecord数据格式。然后迁移学习改进的VGG16卷积神经网络,模型的优化包括利用Swish作为激活函数、将softmax loss与center loss相结合作为损失函数以实现更好的聚类效果、采用性能完善的Adam优化器。用训练集训练模型以确定微调参数信息,再用测试集检验