论文部分内容阅读
【关键词】数学思想 数学运用 数学能力
【中图分类号】G 【文献标识码】A
【文章编号】0450-9889(2013)10A-
0082-02
《义务教育数学课程标准(2011年版)》指出:“数学思想蕴涵在数学知识形成、发展和应用的过程中。”数学思想是在运用数学思想解决数学问题的过程中体现出来的,是人们在学习数学时自觉形成的一种能力。它与数学概念、法则、公式、性质等知识所不同的是,它是无形的。掌握基本的数学思想方法对拓展学生的思维,发展学生的能力起着重要的作用。而数学思想方法的培养不像知识的传授,它是一种隐性的又是客观存在的能力,它隐藏在显性的数学知识之中,在学习、应用数学知识的过程中形成。所以,在数学教学中,教师要深入挖掘数学教材中的数学思想,适时地在数学学习的过程中对学生进行数学思想的渗透。
一、创设有效情境,感知数学思想
数学课程标准提倡,数学教学要从生活中引出数学问题,培养学生进行数学建模并解决问题的能力。数学建模就是将遇到的数学现象、数学问题,使用数学语言来表述。数学知识源于生活并为生活服务,将数学教学生活化,不仅能提高学生学习的主动性,而且能提高他们学以致用的能力。在数学教学中,教师要从学生的认知特点和生活经验出发,对教材内容进行生活化的重新整合,创设生活化的教学情境,让学生在教学情境中产生问题意识,进行数学建模,在分析问题、解决问题的过程中感知数学思想。
例如,教学《小数乘法》(人教版小学数学第九册)一课时,教师创设了买东西的情境:一枝铅笔0.8元,3支铅笔多少元?要求学生列出算式,学生很快列出式子:0.8×3,但是对于0.8×3等于多少,很多学生表示不会算。于是教师引导:“0.8×3到底等于几呢?小朋友们,你们能根据以前学过的方法来计算吗?”学生通过独立思考,找到了利用“乘法的意义”以及“元角分的知识”解决了这个问题。他们有的想到了:0.8×3其实等于把三个0.8加起来,这样就得到了2.4元;有的想到把小数化为整数,然后用整数乘法来计算,即把0.8元看成8角,3个8相乘就是24角等于2.4元。笔者肯定了他们的做法,并指出像这样把未知转化为已知的方法叫化归法。在这样的探究过程中,学生感受到了成功的快乐,提高了学习的兴趣,加强了解决数学问题的自觉性。
在本节课中,笔者创设生活化情境,以问题形式呈现,激发了学生的学习欲望。然后,笔者引导他们从旧知识中进行方法的迁移,不仅解决了问题,而且学会了化归这一常用的数学方法。在这一过程中,学生发现问题、解决问题、归纳方法,在学习中体验到了成功的快乐,促进他们数学思想的发展。
二、引导自主探究,体验数学思想
新课程倡导重视学生的主体性地位,提倡在课堂中开展探究式学习方式,让学生在主动探究中,经历问题发现、探究、解决的过程,激发主体意识,使他们学会学习、发展能力。在小学数学教学中,教师要引导学生主动探究,在探究活动中体验数学思想。
例如,在教学《统计》(人教版小学数学第二册)这一课时,教师创设了“笑笑搭积木”的动画情境:笑笑在高兴地搭着积木,圆形、方形、三角形的积木一块接一块被笑笑搭建起来了……情境播放之后,教师请学生帮忙数一数,笑笑搭了几块积木,每种各有多少块。学生一般都能回答出积木的形状有圆形、方形、三角形,但都觉得播放太快,来不及数,要求教师再播放一遍。于是教师播放了第二遍,要求学生仔细数。当教师开始播放的时候,有的学生睁大了眼,有的学生则用手指着,还有的学生紧张地画着。情境很快播放完了,教师提问:“这次谁看清楚了,圆形积木有几块?”有的学生说是5块,有的学生说是6块,有个学生说:“你们都不对,是7块,我在纸上画下来的,肯定不会错。”教师肯定了他的学习方法,同时提出了一个新的问题:如果播放速度很快,你要画下来不太容易,这时有什么好办法?这个问题及时引导学生进行了讨论,最后师生一起得出结论:事先画好正方形、圆形和三角形三种图形,搭一个就在这个图形的后面打“√”,最后数一数有几个“√”就行了。
在这一教学课例中,教师通过问题设计,引导学生在问题探究的过程中,学会统计方法。整个过程,学生都处于积极的探究之中,取得了较好的学习效果,数学思想方法也得到了有效提升。
三、突出数学运用,拓展数学思想
数学知识的习得,必须要经过探索、练习、运用的过程。只有适当地运用数学知识,才能培养学生的数学能力,发展学生的数学思维。在数学中,化归、类比、猜想、数形结合都是常见的解决问题的方法,是数学思想的重要内容。对此,在小学数学课堂上,教师一定要重视让学生主动应用数学思想解决各类数学问题,提高解决问题的能力。
例如,在教学《两位数乘一位数(口算)》(人教版小学数学第五册)一课时,当学生通过学习掌握了“两位数乘一位数”的口算方法后,一位教师在拓展练习环节中设计了这样一组习题:
8×4= 900×8=
80×4= 90×8=
800×4= 9×8=
当学生练习并检验答案后,教师提问:“同学们,观察这两组算式,你们有什么发现?”学生在对算式分析后发现:当乘法算式中的某个因数发生变化时,积也随着变化,而变化的倍数是因数变化的倍数。
这样的教学,教师不再是把数学习题当成训练口算能力的工具,而是引导学生再一次观察两组算式的特点得出因数与积的变化规律,而这个过程实质上就是对学生进行函数思想的渗透过程。
四、强化总结反思,提升数学思想
数学思想蕴含在数学知识中。教师在教学中要站在必要的高度引领学生进行学习总结与反思,提高学习有效性。教师引领的反思,要让学生思考学习时走了什么弯路,产生什么错误,为什么会产生这样的错误,以及相关的经验教训等。只有在学习中学会适时地归纳、反思、总结,才能提高学生的数学学习能力,防止在学习中被动、盲目地接受知识。
例如,在教学《分类》(人教版小学数学第二册)这节课时,教师在课堂小结中,让学生回忆:分类是根据什么来进行的。通过学生的回忆归纳出可以根据物体的颜色、形状来分类。然后,笔者进行课堂延伸:“在我们的日常生活中,对物体进行分类的标准还可以有很多,例如大小、用处,等等。我们可以按实际需求进行分类。为了提高大家的分类能力,今天就给大家布置一个作业,放学后,把你自己房间的物品进行分类整理,然后拍几张照片,并在照片下面写明分类的理由。”在这个教学过程中,教师利用课堂总结,引领学生对数学学习的过程进行反思,提升学生对“分类”思想的认识。
在教学中渗透数学思想是培养学生能力、为学生继续学习打下基础的必然要求。教学时,教师要有目的、有计划、有序列地渗透数学思想方法,使学生得到的不仅仅是“鱼”,还有“渔”。
(责编 韦 欣)
【中图分类号】G 【文献标识码】A
【文章编号】0450-9889(2013)10A-
0082-02
《义务教育数学课程标准(2011年版)》指出:“数学思想蕴涵在数学知识形成、发展和应用的过程中。”数学思想是在运用数学思想解决数学问题的过程中体现出来的,是人们在学习数学时自觉形成的一种能力。它与数学概念、法则、公式、性质等知识所不同的是,它是无形的。掌握基本的数学思想方法对拓展学生的思维,发展学生的能力起着重要的作用。而数学思想方法的培养不像知识的传授,它是一种隐性的又是客观存在的能力,它隐藏在显性的数学知识之中,在学习、应用数学知识的过程中形成。所以,在数学教学中,教师要深入挖掘数学教材中的数学思想,适时地在数学学习的过程中对学生进行数学思想的渗透。
一、创设有效情境,感知数学思想
数学课程标准提倡,数学教学要从生活中引出数学问题,培养学生进行数学建模并解决问题的能力。数学建模就是将遇到的数学现象、数学问题,使用数学语言来表述。数学知识源于生活并为生活服务,将数学教学生活化,不仅能提高学生学习的主动性,而且能提高他们学以致用的能力。在数学教学中,教师要从学生的认知特点和生活经验出发,对教材内容进行生活化的重新整合,创设生活化的教学情境,让学生在教学情境中产生问题意识,进行数学建模,在分析问题、解决问题的过程中感知数学思想。
例如,教学《小数乘法》(人教版小学数学第九册)一课时,教师创设了买东西的情境:一枝铅笔0.8元,3支铅笔多少元?要求学生列出算式,学生很快列出式子:0.8×3,但是对于0.8×3等于多少,很多学生表示不会算。于是教师引导:“0.8×3到底等于几呢?小朋友们,你们能根据以前学过的方法来计算吗?”学生通过独立思考,找到了利用“乘法的意义”以及“元角分的知识”解决了这个问题。他们有的想到了:0.8×3其实等于把三个0.8加起来,这样就得到了2.4元;有的想到把小数化为整数,然后用整数乘法来计算,即把0.8元看成8角,3个8相乘就是24角等于2.4元。笔者肯定了他们的做法,并指出像这样把未知转化为已知的方法叫化归法。在这样的探究过程中,学生感受到了成功的快乐,提高了学习的兴趣,加强了解决数学问题的自觉性。
在本节课中,笔者创设生活化情境,以问题形式呈现,激发了学生的学习欲望。然后,笔者引导他们从旧知识中进行方法的迁移,不仅解决了问题,而且学会了化归这一常用的数学方法。在这一过程中,学生发现问题、解决问题、归纳方法,在学习中体验到了成功的快乐,促进他们数学思想的发展。
二、引导自主探究,体验数学思想
新课程倡导重视学生的主体性地位,提倡在课堂中开展探究式学习方式,让学生在主动探究中,经历问题发现、探究、解决的过程,激发主体意识,使他们学会学习、发展能力。在小学数学教学中,教师要引导学生主动探究,在探究活动中体验数学思想。
例如,在教学《统计》(人教版小学数学第二册)这一课时,教师创设了“笑笑搭积木”的动画情境:笑笑在高兴地搭着积木,圆形、方形、三角形的积木一块接一块被笑笑搭建起来了……情境播放之后,教师请学生帮忙数一数,笑笑搭了几块积木,每种各有多少块。学生一般都能回答出积木的形状有圆形、方形、三角形,但都觉得播放太快,来不及数,要求教师再播放一遍。于是教师播放了第二遍,要求学生仔细数。当教师开始播放的时候,有的学生睁大了眼,有的学生则用手指着,还有的学生紧张地画着。情境很快播放完了,教师提问:“这次谁看清楚了,圆形积木有几块?”有的学生说是5块,有的学生说是6块,有个学生说:“你们都不对,是7块,我在纸上画下来的,肯定不会错。”教师肯定了他的学习方法,同时提出了一个新的问题:如果播放速度很快,你要画下来不太容易,这时有什么好办法?这个问题及时引导学生进行了讨论,最后师生一起得出结论:事先画好正方形、圆形和三角形三种图形,搭一个就在这个图形的后面打“√”,最后数一数有几个“√”就行了。
在这一教学课例中,教师通过问题设计,引导学生在问题探究的过程中,学会统计方法。整个过程,学生都处于积极的探究之中,取得了较好的学习效果,数学思想方法也得到了有效提升。
三、突出数学运用,拓展数学思想
数学知识的习得,必须要经过探索、练习、运用的过程。只有适当地运用数学知识,才能培养学生的数学能力,发展学生的数学思维。在数学中,化归、类比、猜想、数形结合都是常见的解决问题的方法,是数学思想的重要内容。对此,在小学数学课堂上,教师一定要重视让学生主动应用数学思想解决各类数学问题,提高解决问题的能力。
例如,在教学《两位数乘一位数(口算)》(人教版小学数学第五册)一课时,当学生通过学习掌握了“两位数乘一位数”的口算方法后,一位教师在拓展练习环节中设计了这样一组习题:
8×4= 900×8=
80×4= 90×8=
800×4= 9×8=
当学生练习并检验答案后,教师提问:“同学们,观察这两组算式,你们有什么发现?”学生在对算式分析后发现:当乘法算式中的某个因数发生变化时,积也随着变化,而变化的倍数是因数变化的倍数。
这样的教学,教师不再是把数学习题当成训练口算能力的工具,而是引导学生再一次观察两组算式的特点得出因数与积的变化规律,而这个过程实质上就是对学生进行函数思想的渗透过程。
四、强化总结反思,提升数学思想
数学思想蕴含在数学知识中。教师在教学中要站在必要的高度引领学生进行学习总结与反思,提高学习有效性。教师引领的反思,要让学生思考学习时走了什么弯路,产生什么错误,为什么会产生这样的错误,以及相关的经验教训等。只有在学习中学会适时地归纳、反思、总结,才能提高学生的数学学习能力,防止在学习中被动、盲目地接受知识。
例如,在教学《分类》(人教版小学数学第二册)这节课时,教师在课堂小结中,让学生回忆:分类是根据什么来进行的。通过学生的回忆归纳出可以根据物体的颜色、形状来分类。然后,笔者进行课堂延伸:“在我们的日常生活中,对物体进行分类的标准还可以有很多,例如大小、用处,等等。我们可以按实际需求进行分类。为了提高大家的分类能力,今天就给大家布置一个作业,放学后,把你自己房间的物品进行分类整理,然后拍几张照片,并在照片下面写明分类的理由。”在这个教学过程中,教师利用课堂总结,引领学生对数学学习的过程进行反思,提升学生对“分类”思想的认识。
在教学中渗透数学思想是培养学生能力、为学生继续学习打下基础的必然要求。教学时,教师要有目的、有计划、有序列地渗透数学思想方法,使学生得到的不仅仅是“鱼”,还有“渔”。
(责编 韦 欣)