【摘 要】
:
为明确跨季节蓄冷技术在设施农业应用场景下的技术经济性,选取济南地区某日光温室群为研究对象,采用以冰源热泵为核心的跨季节蓄冷系统实现温室群的全年冷热管理,建立系统的蓄冷量损失模型和节能、经济、环境效益评价模型,对系统蓄冷量、一次能源利用率、费用年值、动态投资回收期及污染物减排量进行分析,并同其他热泵系统和锅炉系统进行比较.结果表明:跨季节蓄冷体的全年冷量损失在5%以内,最大蓄冷量为170409.07 GJ,至全年结束仍有14509.47 GJ剩余,系统可满足温室群全年供冷供热需求;系统的供冷一次能源利用率为
【机 构】
:
中国科学技术大学热科学和能源工程系,安徽 合肥 230027;中国科学院广州能源研究所;中国科学院可再生能源重点实验室;广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640;中国
论文部分内容阅读
为明确跨季节蓄冷技术在设施农业应用场景下的技术经济性,选取济南地区某日光温室群为研究对象,采用以冰源热泵为核心的跨季节蓄冷系统实现温室群的全年冷热管理,建立系统的蓄冷量损失模型和节能、经济、环境效益评价模型,对系统蓄冷量、一次能源利用率、费用年值、动态投资回收期及污染物减排量进行分析,并同其他热泵系统和锅炉系统进行比较.结果表明:跨季节蓄冷体的全年冷量损失在5%以内,最大蓄冷量为170409.07 GJ,至全年结束仍有14509.47 GJ剩余,系统可满足温室群全年供冷供热需求;系统的供冷一次能源利用率为6.27,全年一次能源利用率为1.71,跨季节蓄冷技术的应用大幅提升系统能效,节能效果优越;系统运行费用极低,费用年值最低,动态投资回收期为3.9~6.9年,经济可行性良好;系统较空气源热泵每年可减少13897.90 t CO2、3.61 t SO2、7.16 t NOx和1.41 t烟尘排放,减排率高达77.3%,跨季节蓄冷技术的应用显著减少温室气体及污染物的排放,环境效益显著.
其他文献
锂离子电池作为常见的储能和动力装置在生产生活中得到了广泛应用,但其在滥用条件下会引发热失控,对其安全性的研究很有必要.热失控仿真因其独有的优势,成为研究锂离子电池热失控的重要手段.本文通过对近期文献的研究,从热失控仿真、热蔓延仿真以及热失控仿真的应用三个方面对热失控仿真的研究现状进行了总结.着重介绍了不同诱因(热滥用、机械滥用和电滥用)导致热失控的产热机理和仿真方法,电池组内热蔓延仿真的研究现状和如何抑制热蔓延以及对热失控预测方法的研究.当前的热失控模型已经具有较好的精确度,可以模拟出电池发生热失控时主要
伴随着大型电化学储能项目的大量投产,如何保证大容量储能电池的本质安全成为亟待解决的问题.本文回顾了本质安全概念的演变,介绍了本质安全的内涵.参考煤矿行业本质安全型蓄电池的设计规范,提出了电池储能本质安全分级方案,将电池储能安全等级分为本质安全、非本质安全以及不安全三类.针对储能电池以模组和集装箱形式运行的现状,根据不同的组成形式,将电池储能的本质安全区分为电芯、模组以及集装箱系统三个层面的理解,并分别对其本质安全性进行论述.针对储能电池电芯的本质安全梳理了不同方向的技术路线,围绕水系电池、固态电池和安全剂
精确的锂离子电池荷电状态(state of charge,SOC)估计对于电池管理系统至关重要.模型参数辨识是SOC估计的前提,也是影响其估计精度的关键因素.为了有效避免噪声对参数辨识的影响,采用偏差补偿递推最小二乘法(BCRLS)进行在线参数辨识.在此基础上,采用自适应容积卡尔曼滤波(ACKF)算法估计电池SOC,对系统噪声进行实时更新以提高估计精度.此外,对于计算过程中由于协方差矩阵失去正定性而出现平方根无法分解的问题,利用奇异值分解的方法代替Cholesky分解,以提高数值计算的稳定性.最后将BCR
为实现“双碳”目标,电动汽车成为了交通工具转型的重要途径.但由于充电速度影响电动汽车用户体验,一定程度上制约了电动汽车的推广应用,为此,发展大功率充电是提升电动汽车市场渗入率的重要技术途径.然而,由于大功率充电带来的动力电池加速老化以及快速产热导致的动力电池组温度分布不一致性等问题,给电动汽车快速充电策略的制定和热管理系统的设计带来了新的挑战.本文从电动汽车大功率充电策略优化和电池组热管理系统设计两个角度,归纳了目前面向电动汽车大功率充电过程的管理技术研究现状.围绕大功率充电方式对动力电池性能的影响,评价
构建以新能源为主体的新型电力系统,意味着风电和光伏将成为未来电力系统的主体.新能源发电固有的随机性、间歇性、波动性使调峰问题日益突出.燃气电站和电化学储能由于可调范围大、响应速度快,未来有望成为重要的调峰资源.首先,梳理了各省天然气发电调峰、储能调峰相关政策和市场规则,从准入门槛、参与方式、申报价格等方面进行了对比分析;然后,基于平准化电力成本(LCOE)概念,详细分析了包含初始投资、运维检修、燃料成本在内的天然气发电调峰电站、储能电站成本构成;最后,以某省为例,对比燃气发电调峰和储能调峰经济性,定量分析
分别采用干法和湿法涂布工艺制备出活性炭正极和石墨负极,制作成066090型软包锂离子电容器(LIC)单体.采用恒流充放电嵌锂法对负极进行预锂化,理论嵌锂深度为85%.通过扫描电子显微镜(SEM)、剥离强度、电性能测试等表征方法,分析了干法和湿法涂布工艺对电极结构和形貌、黏结性能及电性能的影响.阐述了电极结构对软包LIC容量、内阻、耐久性、循环性能和低温性能的影响.结果表明,干法电极内有充分的黏结剂纤维结构,碳颗粒的接触紧密.干法电极的体积密度相比湿法涂布电极提高了8%以上,其剥离强度比湿法电极高50%以上