论文部分内容阅读
推荐系统是个性化服务中最重要的技术之一,协同过滤技术已经成功地应用于个性化推荐系统中。随着用户和商品数目日益增加,推荐系统的效能逐渐降低,实时性要求也难以保证。针对此缺点,本文使用了一种基于模糊聚类的协同过滤推荐,根据用户对项目评分的相似性对项目进行模糊聚类,并在此基础上搜索目标用户的最近邻居,从而缩小最近邻的查找范围并产生推荐结果。实验结果表明,该方法可以有效提高个性化服务中的实时响应速度。