基于卷积神经网络的极光图像分类

来源 :极地研究 | 被引量 : 3次 | 上传用户:yangxin_ctbri
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
极光是由带电粒子经磁层—电离层碰撞大气而产生的。面对形态各异、演变过程复杂的极光图像,对其合理分类为进一步探究日地电磁活动和能量耦合等空间物理问题奠定了基础。针对该问题,引入深度学习的方法,通过卷积神经网络模型自主表征极光特征并实现极光图像分类。该方法对2003年北极黄河站越冬观测的38 044幅和8 001幅典型极光图像分类正确率达93.17%和91.5%;自动识别2004—2009年观测数据的极光形态,4类极光时间分布规律与三波段激发谱能量分布基本一致。实验结果表明,基于卷积神经网络的极光表征方
其他文献