论文部分内容阅读
协同演化是解决大尺度连续优化问题的一种有效策略.但是,对于决策变量重叠型(决策变量不可分且相互依赖)的高维问题,其分组方法可能会误导算法的搜索.针对这一情况,本文提出一种全新的协同演化策略(Differential Evolution Cooperative Coevolution with Correlation Learning Between Variables,DECC-CLV),其思想是首先计算演化种群分布所包含的主特征轴,然后计算各维决策变量在主轴上的投影值并利用它们之间的正负相关性进行分组.