论文部分内容阅读
针对标准BP算法易陷入局部极值及收敛速度慢等问题,提出一种基于粒子群优化与BP算法的协同神经网络学习方法。该方法在网络的学习过程中,同时利用PSO优化算法与BP算法进行最优网络权值的协同搜索,从而充分利用粒子群算法的全局搜索性及BP算法的反向传播特点。将该算法应用于4个复杂函数的拟合仿真,并与标准BP算法以及传统的粒子群优化BP神经网络算法进行比较。实验结果表明所提的协同算法的性能优于传统的BP网络优化算法。