论文部分内容阅读
根据气液两相流的特点,将其分为层状流、塞状流、弹状流和环状流等流型,分别对其采集差压信号,并利用概率密度函数(PDF)对差压信号特征进行了分析,得出了PDF的4个特征参数,即波峰个数K1、波峰峰值K2、波峰位置K3、PDF方差K4。将K1,K2,L3,K4构成的特征向量作为神经网络的输入样本对BP神经网络进行训练并进行流型识别。结果表明,该方法具有准确率高等优点,是流型识别的一种新手段。