论文部分内容阅读
语音识别系统在音频质量较差时,经常出现识别错误的情况,为提高识别精度,基于连续隐马尔科夫模型设计英语翻译机器人语音识别系统。在硬件中,设计音频信号接收器和机器人音频识别模块主处理器。在软件中,对音频信号量化并预加重处理,计算帧移距离与每帧长度之间的比值,获取模拟信号转换频率与基本单位量化指标;基于连续隐马尔可夫模型构建语音文本解编码器,计算窗函数的宽度,在网格中获取马尔科夫链概率路径,比较不同概率路径的复杂度;设计英语翻译机器人语音识别算法,得到英语翻译机器人的语音识别结果。由实验数据可知:该系统在三种不同音频质量下的语音识别准确率均在75%以上,较其他系统更稳定,在同等音频质量下,准确率更高,可见连续隐马尔可夫模型的语音识别系统优于其他系统。