论文部分内容阅读
最小二乘法(LS)分类器是一种基础但有效的分类器,尤其适用于解决大规模数据分类问题.LS方法需要求逆矩阵,这使得LS方法在处理高维数据问题时效率低下.为此,提出基于LS的并行化非线性方法(PNLS).通过随机地划分数据维,PNLS能够并行地计算局部模型参数,经过迭代优化,形成最终的全局解.PNLS方法具有三个特点:1)局部线性但全局非线性;2)避免求解大矩阵的逆,适合处理高维数据;3)通过并行计算,能够提高学习效率.另外,理论分析证明了PNLS方法的收敛性.本文进一步提出一种随机版本的PNLS方法,