论文部分内容阅读
能量数据作为模板攻击过程中的关键对象,具有维度高、有效维度少、不对齐的特点,在进行有效的预处理之前,模板攻击难以奏效。针对能量数据的特性,该文提出一种基于流形学习思想进行整体对齐的方法,以保留能量数据的变化特征,随后通过线性投影的方法降低数据的维度。使用该方法在Panda 2018 challenge1标准数据集进行了验证,实验结果表明,该方法的特征提取效果优于传统的PCA和LDA方法,能大幅度提高模板攻击的成功率。最后采用模板攻击恢复密钥,仅使用两条能量迹密钥恢复成功率即可达到80%以上。