PSO优化在模糊联合补充问题中的应用

来源 :计算机工程与应用 | 被引量 : 0次 | 上传用户:zybzsj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
对用PSO算法解决需求为不确定的联合补充问题进行了研究。运用模糊规划方法处理需求为模糊变量的联合补充问题,得到了作为求解目标的模糊数学模型;采用PSO思想对该模型进行分析,转化为PSO问题模型,制定出算法流程,并用数值实例验证了提出的粒子群优化模型和求解算法的有效性;对随机生成的大量数据进行处理,结果证明问题规模相同时该算法较遗传算法具有更高的效率。
其他文献
通过引入随机向量序列对赋值集进行随机化,在逻辑系统G3中提出了公式的D3-随机真度的概念,证明了全体公式的D3-随机真度之集在[0,1]中没有孤立点;提出了D3-相似度和D3-伪距离
针对并行与分布式系统中的同型机调度问题,提出了一种改进蚁群算法。结合问题具体特点,给出了蚂蚁分配方案的生成策略,设计了一种新颖的基于任务适合度的信息素表示方法,以实现信
提出了一种基于频繁子树模式的GML文档结构聚类算法GCFS(GML Clustering based on Frequent Subtree patterns),与其他相关算法不同,该算法首先挖掘GML文档集合中的最大与闭合
针对PSO在寻优过程容易出现“早熟”现象,提出了一种基于Sobol序列的自适应变异PSO算法(SAPSO)。该算法以积分控制粒子群算法(ICPSO)为基础,使用准随机Sobol序列初始化种群个体,并在
多层次的集群功耗管理方法,在不明显影响系统性能的前提下,降低集群系统的功耗。该管理方法分为集群层次的功耗管理和本地节点层次的功耗管理。集群层次的功耗管理基于自学习