论文部分内容阅读
微博情感分析对于商业事务和政治选举等应用非常重要。传统的做法主要基于浅层机器学习模型,对人工提取的特征有较大的依赖,而微博情感特征往往难以提取。深度学习可以自动学习层次化的特征,并被用于解决情感分析问题。随着新的深度学习技术的提出,人们发现只要提供足够多的监督数据,就能训练出好的深度模型。然而,在微博情感分析中,通常监督数据都非常少。微博中广泛存在着弱监督数据。该文提出基于弱监督数据的“预训练—微调整”训练框架(distant pretrain-finetune),使用弱监督数据对深度模型进行预训练,然后