论文部分内容阅读
【摘要】
在初中教学教学中为学生创设合理问题情境,让学生亲身经历将实际的问题抽象成数学模型并进行解释应用的过程,尤为重要。“教学的艺术,不在于教援的本领,而在于激励、唤醒、鼓舞”。数学课堂教学中创设恰当的问题情境能唤醒学生强烈的求知欲望,可以培养学生探索知识能力和方法,促进学生全面地获得数学知识。
【关键词】创设 初中数学 问题情境
初中数学教学中如何创设问题情境,笔者通过结合学校的课题研究及自身的实践,提出了自己主要观点:创设问题情境要合理、有效。根据最近发展区原理,课堂中我们设计的问题,要让学生能够理解好,能够应用自身学过的原理、结论对未知现象及其规律所作出的一种假设性的命题进行合理猜想。一堂好的课,问题的提出能够让学生有的放矢,“跳一跳就能摘到桃子”,注意问题可相对学生操作性,才能起到激发学生学习的初步前提。
1.讲述数学典故来创设问题情境
根据实际教学内容,向学生绘声绘色地讲述精彩的故事,创设问题情境,有时会收到意想不到的效果。历史上的数学典故有时反映了知识形成的过程,有时反映了知识点的本质,用这样的故事来创设问题的情境不仅能够加深学生对知识的理解,还能加深学生对数学的兴趣,提高数学的审美能力。
在学习“相似三角形的应用”时,教师给学生边讲个古希腊哲学家泰勒斯测量金字塔高度的故事,边用多媒体展示情景图片,学生都非常疑惑不解,教师因势利导引入相似三角形知识应用的学习,学完新课后,再一起回过头来思考泰勒斯是用什么方法原理测量金字塔高度。这样的一个持续的问题情境贯穿于整堂课堂教学,激发了学生的思维,同时也培养了学生应用数学知识解决设计问题的意识。
2.在学生已有的认知基础上创设问题情境
学生的学习是以一切现有的认知发展水平为出发点,所以知识的引入只有在与学生的认知水平相适才能促进学生的主动建构。简单地说,就是新知识的学习总是在原有的基础上进行的。因此,在教学新的内容时,教师应注意从学生已有的知识背景出发,提供丰富的感性材料,展现知识产生发展的实际背景,设法激活学生已有的数学知识经验和生活经验,引导和启发学生进行新旧对比,同化新知识,从而使学生看到数学知识的来龙去脉,体验到数学知识的形成过程。
如通过复习分数的基本性质,让学生类比探讨分式的基本性质。通过复习全等三角形的识别方法,来探索相似三角形的识别方法。通过复习点和圆的位置关系、直线和圆的位置关系来研究圆和圆的位置关系等。
3. 让学生在数学活动中主动探究来创设问题情
学生的数学学习内容应当是现实的、有趣的和富有挑战性的。在学生的心灵深处,都有一种强烈的探究的需要。在教学时,教师精心创设情境,让学生主动动手,在活动中由学生自己去探究,这样有利于学生从事观察、实验、猜想、验证、推理与交流,有利于学生在实践中培养数学兴趣和探究精神
如学习有理数乘方时,完全可以让学生通过动手折叠报纸探究乘方的知识:开始展示很大的报纸时许多同学都说能对折几十甚至上百次,可是在动手实践后却发现折叠到七次的时候已经非常困难,许多同学都是大惑不解。然后引导学生进行计算,终于发现:报纸厚度随着对折次数的增加以等比级数增加,而其面积则相应地以同样比例减少。加上纸本身的拉力,把报纸对折第九次无疑比一次将512张报纸对折更要困难!
讲圆定义时,可以动手将一根绳子固定在一点上,然后拉紧绳的某一个点形成的轨迹就是圆。通过这个操作,学生形象生动的记住了圆的第一定义。在现行课本中存在大量的此类实例,如研究图形的平移、旋转、中心对称,概率中的随机试验,函数图像的画法及性质得出等等,都给学生提供了通过操作掌握有关知识点的问题情境。
4.为深化学生认知结构而设计的认知冲突型问题情境
以富有挑战性、探究性且处于学生认知结构的最近发展区的问题为素材,可创设认知冲突型教学情境,使学生处于心欲求而不得,口欲言而不能的“愤悱”状态,引起认知冲突,产生认知推敲,从而激起学生强烈的探究欲望和学习动机。
例如:在学生学完三角形全等的判定之后,我就为学生们设计了这样一个问题情境。课本上举例说明了“有两边和其中一边的对角对应相等的两个三角不一定全等”,那么“有两边和其中一边的对角对应相等的两个三角形”在什么情况下全等?什么情况下不全等呢?以上这一情境,激起了学生们的探究欲望,有利于学生在自主探索中寻找答案。
5.从生活实际中创设问题情境
教育起源于生活,很多数学知识和理论都来自于生活,能从生活中建立起来的数学模型。一个来自于生活的话题,经过组织展开数学学习,课堂气氛就会十分热烈,学生的参与率会大大提高。如《直线与圆的位置关系》这节课中,如果我们把太阳看作圆,地平线看作直线,那么太阳在初升的一系列过程中,它们之间有几种位置关系呢?在这样的课堂的气氛下能使学生充分地展开思维,都成了问题的主角,在宽松的课堂气氛下,学生就能自信地,愉快地交流,每个学生都得以参与和体验。学生在获取基础知识和基本技能的同时,亲历一个这样的“过程”,不仅能激发学生的思维积极性,加深对教材的理解,而且能获取情感体验,激发学生的潜在力,同时,为学生的创新提供了必要的前提。
参考文献
[1] 牟永君.浅谈数学教学中的“问题情境”[J].数学学习与研究,2010年02期.
[2] 孙家声.浅谈初中数学教学中的问题情境[J].教育教学论坛,2010年36期.
在初中教学教学中为学生创设合理问题情境,让学生亲身经历将实际的问题抽象成数学模型并进行解释应用的过程,尤为重要。“教学的艺术,不在于教援的本领,而在于激励、唤醒、鼓舞”。数学课堂教学中创设恰当的问题情境能唤醒学生强烈的求知欲望,可以培养学生探索知识能力和方法,促进学生全面地获得数学知识。
【关键词】创设 初中数学 问题情境
初中数学教学中如何创设问题情境,笔者通过结合学校的课题研究及自身的实践,提出了自己主要观点:创设问题情境要合理、有效。根据最近发展区原理,课堂中我们设计的问题,要让学生能够理解好,能够应用自身学过的原理、结论对未知现象及其规律所作出的一种假设性的命题进行合理猜想。一堂好的课,问题的提出能够让学生有的放矢,“跳一跳就能摘到桃子”,注意问题可相对学生操作性,才能起到激发学生学习的初步前提。
1.讲述数学典故来创设问题情境
根据实际教学内容,向学生绘声绘色地讲述精彩的故事,创设问题情境,有时会收到意想不到的效果。历史上的数学典故有时反映了知识形成的过程,有时反映了知识点的本质,用这样的故事来创设问题的情境不仅能够加深学生对知识的理解,还能加深学生对数学的兴趣,提高数学的审美能力。
在学习“相似三角形的应用”时,教师给学生边讲个古希腊哲学家泰勒斯测量金字塔高度的故事,边用多媒体展示情景图片,学生都非常疑惑不解,教师因势利导引入相似三角形知识应用的学习,学完新课后,再一起回过头来思考泰勒斯是用什么方法原理测量金字塔高度。这样的一个持续的问题情境贯穿于整堂课堂教学,激发了学生的思维,同时也培养了学生应用数学知识解决设计问题的意识。
2.在学生已有的认知基础上创设问题情境
学生的学习是以一切现有的认知发展水平为出发点,所以知识的引入只有在与学生的认知水平相适才能促进学生的主动建构。简单地说,就是新知识的学习总是在原有的基础上进行的。因此,在教学新的内容时,教师应注意从学生已有的知识背景出发,提供丰富的感性材料,展现知识产生发展的实际背景,设法激活学生已有的数学知识经验和生活经验,引导和启发学生进行新旧对比,同化新知识,从而使学生看到数学知识的来龙去脉,体验到数学知识的形成过程。
如通过复习分数的基本性质,让学生类比探讨分式的基本性质。通过复习全等三角形的识别方法,来探索相似三角形的识别方法。通过复习点和圆的位置关系、直线和圆的位置关系来研究圆和圆的位置关系等。
3. 让学生在数学活动中主动探究来创设问题情
学生的数学学习内容应当是现实的、有趣的和富有挑战性的。在学生的心灵深处,都有一种强烈的探究的需要。在教学时,教师精心创设情境,让学生主动动手,在活动中由学生自己去探究,这样有利于学生从事观察、实验、猜想、验证、推理与交流,有利于学生在实践中培养数学兴趣和探究精神
如学习有理数乘方时,完全可以让学生通过动手折叠报纸探究乘方的知识:开始展示很大的报纸时许多同学都说能对折几十甚至上百次,可是在动手实践后却发现折叠到七次的时候已经非常困难,许多同学都是大惑不解。然后引导学生进行计算,终于发现:报纸厚度随着对折次数的增加以等比级数增加,而其面积则相应地以同样比例减少。加上纸本身的拉力,把报纸对折第九次无疑比一次将512张报纸对折更要困难!
讲圆定义时,可以动手将一根绳子固定在一点上,然后拉紧绳的某一个点形成的轨迹就是圆。通过这个操作,学生形象生动的记住了圆的第一定义。在现行课本中存在大量的此类实例,如研究图形的平移、旋转、中心对称,概率中的随机试验,函数图像的画法及性质得出等等,都给学生提供了通过操作掌握有关知识点的问题情境。
4.为深化学生认知结构而设计的认知冲突型问题情境
以富有挑战性、探究性且处于学生认知结构的最近发展区的问题为素材,可创设认知冲突型教学情境,使学生处于心欲求而不得,口欲言而不能的“愤悱”状态,引起认知冲突,产生认知推敲,从而激起学生强烈的探究欲望和学习动机。
例如:在学生学完三角形全等的判定之后,我就为学生们设计了这样一个问题情境。课本上举例说明了“有两边和其中一边的对角对应相等的两个三角不一定全等”,那么“有两边和其中一边的对角对应相等的两个三角形”在什么情况下全等?什么情况下不全等呢?以上这一情境,激起了学生们的探究欲望,有利于学生在自主探索中寻找答案。
5.从生活实际中创设问题情境
教育起源于生活,很多数学知识和理论都来自于生活,能从生活中建立起来的数学模型。一个来自于生活的话题,经过组织展开数学学习,课堂气氛就会十分热烈,学生的参与率会大大提高。如《直线与圆的位置关系》这节课中,如果我们把太阳看作圆,地平线看作直线,那么太阳在初升的一系列过程中,它们之间有几种位置关系呢?在这样的课堂的气氛下能使学生充分地展开思维,都成了问题的主角,在宽松的课堂气氛下,学生就能自信地,愉快地交流,每个学生都得以参与和体验。学生在获取基础知识和基本技能的同时,亲历一个这样的“过程”,不仅能激发学生的思维积极性,加深对教材的理解,而且能获取情感体验,激发学生的潜在力,同时,为学生的创新提供了必要的前提。
参考文献
[1] 牟永君.浅谈数学教学中的“问题情境”[J].数学学习与研究,2010年02期.
[2] 孙家声.浅谈初中数学教学中的问题情境[J].教育教学论坛,2010年36期.