论文部分内容阅读
A folding beam-type piezoelectric phononic crystal model is proposed to isolate vibration. Two piezoelectric bimorphs are joined by two masses as a folding structure to comprise each unit cell of the piezoelectric phononic crystal. Each bimorph is connected independently by a resistive-inductive resonant shunting circuit. The folding structure extends the propagation path of elastic waves, while its structure size remains quite small. Propagation of coupled extension-flexural elastic waves is studied by the classical laminated beam theory and transfer matrix method. The theoretical model is further verified with the finite element method(FEM). The effects of geometrical and circuit parameters on the band gaps are analyzed. With only 4 unit cells, the folding beam-type piezoelectric phononic crystal generates two Bragg band gaps of 369 Hz to1 687 Hz and 2 127 Hz to 4 000 Hz. In addition, between these two Bragg band gaps, a locally resonant band gap is induced by resonant shunting circuits. Appropriate circuit parameters are used to join these two Bragg band gaps by the locally resonant band gap.Thus, a low-frequency and broad band gap of 369 Hz to 4 000 Hz is obtained.
A folding beam-type piezoelectric phononic crystal model is proposed to isolate vibration. Two piezoelectric bimorphs are joined by two masses as a folding structure to comprise unit cells of the piezoelectric phononic crystal. Each bimorph is connected separately by a resistive-inductive resonant shunting The folding structure extends the propagation path of elastic waves, while its structure size remains quite small. Propagation of coupled extension-flexural elastic waves is studied by the classical laminated beam theory and transfer matrix method. The theoretical model is further verified with the The effects of geometrical and circuit parameters on the band gaps are analyzed. With only 4 unit cells, the folding beam-type piezoelectric phononic crystal generates two Bragg band gaps of 369 Hz to1 687 Hz and 2 127 Hz to 4 000 Hz. In addition, between these two Bragg band gaps, a locally resonant band gap is induced by resonant shunting circu Appropriate circuit parameters are used to join these two Bragg band gaps by the localized resonant band gap. Thus, a low-frequency and broad band gap of 369 Hz to 4 000 Hz is obtained.