论文部分内容阅读
Background:Genotyping by sequencing (GBS) still has problems with missing genotypes.Imputation is important for using GBS for genomic predictions,especially for low depths,due to the large number of missing genotypes.Minor allele frequency (MAF) is widely used as a marker data editing criteria for genomic predictions.In this study,three imputation methods (Beagle,IMPUTE2 and Flmpute software) based on four MAF editing criteria were investigated with regard to imputation accuracy of missing genotypes and accuracy of genomic predictions,based on simulated data of livestock population.Results:Four MAFs (no MAF limit,MAF ≥ 0.001,MAF ≥ 0.01 and MAF ≥ 0.03) were used for editing marker data before imputation.Beagle,IMPUTE2 and Flmpute software were applied to impute the original GBS.Additionally,IMPUTE2 also imputed the expected genotype dosage after genotype correction (GclM).The reliability of genomic predictions was calculated using GBS and imputed GBS data.The results showed that imputation accuracies were the same for the three imputation methods,except for the data of sequencing read depth (depth) =2,where Flmpute had a slightly lower imputation accuracy than Beagle and IMPUTE2.GclM was observed to be the best for all of the imputations at depth =4,5 and 10,but the worst for depth =2.For genomic prediction,retaining more SNPs with no MAF limit resulted in higher reliability.As the depth increased to 10,the prediction reliabilities approached those using true genotypes in the GBS loci.Beagle and IMPUTE2 had the largest increases in prediction reliability of 5 percentage points,and Flmpute gained 3 percentage points at depth =2.The best prediction was observed at depth =4,5 and 10 using GclM,but the worst prediction was also observed using GclM at depth =2.Conclusions:The current study showed that imputation accuracies were relatively low for GBS with low depths and high for GBS with high depths.Imputation resulted in larger gains in the reliability of genomic predictions for GBS with lower depths.These results suggest that the application of IMPUTE2,based on a corrected GBS (GclM) to improve genomic predictions for higher depths,and Flmpute software could be a good altative for routine imputation.