论文部分内容阅读
核主成分分析(KPCA)与多层感知器(MLP)是流行的特征提取算法,但这些算法存在效率低下与易陷于局部最优解等问题。针对KPCA与MLP算法存在的问题,提出了一个新颖的特征提取算法——基于最大间隔超平面的增强的特征提取算法(EFE)。该算法独立于输入样本的概率分布,通过采用隔间最大化且两两正交的最大分割超平面,将输入样本映射到超平面的法线所张成的子空间中,实现输入样本的特征提取。在对现实世界数据集wine与AR的特征提取的实验表明,基于最大间隔超平面的增强特征提取算法在执行效率、识别准确率方面均超出