【摘 要】
:
渗透测试是通过模拟黑客攻击的方式对网络进行安全测试的通用方法,传统渗透测试方式主要依赖人工进行,具有较高的时间成本和人力成本。智能化渗透测试是未来的发展方向,旨在更加高效、低成本地进行网络安全防护,渗透测试路径发现是智能化渗透测试研究的关键问题,目的是及时发现网络中的脆弱节点以及攻击者可能的渗透路径,从而做到有针对性的防御。文中将深度强化学习与渗透测试问题相结合,将渗透测试过程建模为马尔可夫决策模型,在模拟网络环境中训练智能体完成智能化渗透测试路径发现;提出了一种改进的深度强化学习算法Noisy-Doub
【机 构】
:
国防科技大学电子对抗学院,网络空间安全态势感知与评估安徽省重点实验室
论文部分内容阅读
渗透测试是通过模拟黑客攻击的方式对网络进行安全测试的通用方法,传统渗透测试方式主要依赖人工进行,具有较高的时间成本和人力成本。智能化渗透测试是未来的发展方向,旨在更加高效、低成本地进行网络安全防护,渗透测试路径发现是智能化渗透测试研究的关键问题,目的是及时发现网络中的脆弱节点以及攻击者可能的渗透路径,从而做到有针对性的防御。文中将深度强化学习与渗透测试问题相结合,将渗透测试过程建模为马尔可夫决策模型,在模拟网络环境中训练智能体完成智能化渗透测试路径发现;提出了一种改进的深度强化学习算法Noisy-Doub
其他文献
针对现有时间基一次性密码方案无法高效运行于可编程逻辑控制器(PLC)的问题,借鉴T/KEY单链方案,提出一种基于分组密码的时间基一次性密码方案BC-TOTP。使用PRESENT和SPECK分组密码算法来实例化加密函数,采用该加密函数计算链上的所有节点,使得证明方可在相应的时间内向验证方证明其身份。通过基于理想密码模型和分组密码IND-CPA的安全假设验证了BC-TOTP方案的安全性,并在罗克韦尔Allen-Bradley PLC上的测试结果表明,其能大幅减少计算时间,且单链使用周期将近1年。
高维数据中存在着大量的冗余和不相关特征,严重影响了数据挖掘的效率、质量以及机器学习算法的泛化性能,因此特征选择成为计算机科学与技术领域的重要研究方向。文中利用自编码器的非线性学习能力提出了一种无监督特征选择算法。首先,基于自编码器的重建误差选择出单个特征对数据重建贡献大的特征子集。其次,利用单层自编码器的特征权重最终选择出对其他特征重建贡献大的特征子集,通过流形正则保持原始数据空间的局部与非局部结构,并且对特征权重增加L2/1稀疏正则来提高特征权重的稀疏性,使之选择出更具区别性的特征。最后,构造一个新的目
图像分类中的差分隐私算法在通过添加噪声的方式提高机器学习模型的隐私保护能力的同时,容易造成模型分类准确度的下降。针对以上问题,提出了一种基于特征映射的差分隐私保护机器学习方法,该方法结合预训练神经网络和影子模型训练技术,以差分向量的形式将原数据样本的特征向量映射到高维向量空间,缩短样本在高维向量空间的距离,以减小模型更新造成的隐私信息泄露风险,同时提高机器学习模型的隐私保护能力和分类能力。由MNI
为高效地寻找基于决策的黑盒攻击下的对抗样本,提出一种利用模型之间的迁移性提升对抗起点的方法。通过模型之间的迁移性来循环叠加干扰图像,生成初始样本作为新的攻击起点进行边界攻击,实现基于决策的无目标黑盒对抗攻击和有目标黑盒对抗攻击。实验结果表明,无目标攻击节省了23%的查询次数,有目标攻击节省了17%的查询次数,且整个黑盒攻击算法所需时间低于原边界攻击算法所耗费的时间。
针对开启内核地址空间布局随机化(KASLR)防护的Linux系统,提出一种基于CPU预取指令的Cache计时攻击方法。Intel CPU的预取指令在预取未映射到物理地址的数据时会发生Cache失效,导致消耗的CPU时钟周期比已映射到物理地址的数据要长。根据这一特点,通过rdtscp指令获取CPU时钟周期消耗,利用计时攻击绕过KASLR技术防护,从而准确获取内核地址映射的Offset。实验结果表明,该攻击方法能够绕过Linux操作系统的KASLR防护,获得准确的内核地址映射位置,并且避免引起大量Cache失
近年来,工业物联网迅猛发展,在实现工业数字化、自动化、智能化的同时也带来了大量的网络威胁,且复杂、多样的工业物联网环境为网络入侵者创造了全新的攻击面。传统的入侵检测技术已无法满足当前工业物联网环境下的网络威胁发现需求。对此,文中提出了一种基于深度强化学习算法近端策略优化(Proximal Policy Optimization 2.0,PPO2)的工业物联网入侵检测系统。该系统将深度学习的感知能力
苏州发绣作为苏绣的分支,是由精选的少女天然发丝作为原材料的苏州民间特殊绣种。通过对苏州发绣工艺流程、针法风格的分析以及对发绣色彩的考释,总结出苏州发绣技艺与色彩融合给予当代设计者的美学价值、思维与方法启示,对苏州发绣的传承与创新融合具有重要意义。
针对FCM算法在分割脑MRI图像时存在噪声敏感性和初始聚类中心随机性的问题,提出一种融合图像Tamura纹理特征的改进FCM图像分割算法。首先提取图像的Tamura纹理特征,将其与灰度特征线性加权构成融合特征。然后使用模糊邻域关系计算像素点的密度,将其与距离关系结合自适应选取初始聚类中心。最后使用融合特征作为更新隶属度和聚类中心的特征约束。实验利用该方法与FCM,D-FCM,WKFCM方法对Bra
在动态场景的SLAM系统中,传统的特征点法视觉SLAM系统易受动态物体的影响,使得图像前后两帧的动态物体区域出现大量的误匹配,导致机器人定位精度不高。为此,提出一种结合自适应窗隔匹配模型与深度学习算法的动态场景RGB-D SLAM算法。构建基于自适应窗隔匹配模型的视觉SLAM前端算法框架,该框架筛选图像帧后采用基于网格的概率运动统计方式实现匹配点筛选,以获得静态区域的特征匹配点对,然后使用恒速度模
深度学习算法被广泛地应用于网络流量分类,具有较好的分类效果,应用卷积神经网络不仅能大幅提高网络流量分类的准确性,还能简化其分类过程.然而,神经网络面临着对抗攻击等安