大型多人在线角色扮演游戏的下一地点预测

来源 :计算机科学 | 被引量 : 0次 | 上传用户:UltraSparc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近年来,大型多人在线角色扮演游戏(MMORPG)已经成为最流行的网络娱乐活动之一。MMORPG在游戏环境中形成虚拟社会,其中每个玩家扮演某个虚构角色,并控制该角色的大多数活动。游戏的迅猛发展累积了海量数据,其中包含游戏虚拟社会的语义和拓扑信息。研究者针对游戏数据开展了一系列研究工作,如玩家退出预测、游戏服务器整合等。游戏角色的下一地点预测对提升游戏体验、改善游戏设计和检测游戏机器人均有十分重要的意义。目前,该项预测任务主要使用统计分析完成。然而,由于游戏数据具有海量特征,因此需要一种自动化的计算方法。文中提出了基于隐马尔科夫模型的游戏角色下一地点预测模型,该模型能够考虑与位置特性相关的不可观测的属性,同时兼顾游戏角色前期行为的影响。实验结果表明,与现有方法相比,该方法具有建模直观的特点,在稠密分布的MMORPG数据中能够得到更准确的下一地点预测结果。
其他文献
针对传统的信息与时间电控系统ETACS(Electrical Timer And Control System)产品测试中存在的缺陷,利用虚拟仪器技术,对信息与时间电控系统产品测试进行了实验与研究.提出了一种ET
多条序列的最长公共子序列可以代表多条序列的公共信息,其在诸多领域里有着重要的应用,如信息检索、基因序列匹配等。求解多条序列的最长公共子序列是著名的NP难问题,本质为
当今社会,人们越来越多地通过社交网络来发言、聊天、交友。在互动过程中,除了用户主动关注感兴趣的人之外,社交网络也会为其推荐朋友。然而,所推荐的朋友大部分只是社交网络
广义极小残量法(GMRES)是最常用的求解非对称大规模稀疏线性方程组的方法之一,其收敛速度快且稳定性良好。Intel Xeon Phi众核协处理器(MIC)具有计算能力强、易编程、易移植等特
问句理解是问答系统的主要任务之一。现有的问句理解方法大多是针对简单句的,且侧重于某种句式结构的理解。提出一种多领域问句理解研究方法,其涉及领域包括人物类、电影类、