基于新残差网络的图像隐写分析方法

来源 :计算机应用研究 | 被引量 : 0次 | 上传用户:xiaozhao550
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
卷积神经网络在隐写分析领域取得了一系列进展,但现有网络结构大多都是专用隐写分析,只针对某一类隐写算法有效。为了提高模型的泛化能力,提出了一种基于新残差网络的图像隐写分析算法。构建了残差分组融合网络结构(W-R2N),采用分组融合的方式来提高提取多尺度特征的能力,增大每层网络的感受野范围,并且增加每组卷积的对角相关性。相对于Xu-Net和SRNET在S-UNIWARD嵌入率为0.4 bpp情况下隐写分析准确率分别提高了17.13%和0.81%。实验结果表明,相对于现有卷积神经网络,该模型泛化能力更好,
其他文献
研究如何充分利用海量用户浏览行为数据,构建更加精确的推荐算法和模型,以提高推荐系统性能,是目前个性化推荐领域研究的热点。针对这些问题,首先对用户的浏览行为进行了简要概括表述,给出了基于浏览行为推荐系统的总体框架,回顾总结了基于用户浏览行为的推荐系统的发展历程。对其关键技术和单一浏览行为量化方法与混合浏览行为量化方法进行总结、对比和分析。最后讨论了结合多源异构数据的浏览行为推荐的最新成果,总结了该领