论文部分内容阅读
探讨Faster RCNN模型在坯布疵点检测中的应用效果。在原始FasterRCNN的基础上,采用提取特征效果更好的深度残差网络,先使用残差网络进行坯布图像特征提取,再通过区域生成网络及Fast RCNN检测网络对坯布的疵点目标进行分类与检测。试验对比了Faster RCNN分别与VGG16、ResNet101结合时的检测结果,并讨论了不同参数对结果的影响。试验结果表明:该方法可以有效解决坯布疵点检测问题,检测准确率能够达到99.6%。认为:基于Faster RCNN目标检测与ResNet101卷积神经网