论文部分内容阅读
Background The peritoneum response to peritoneal dialysis can lead to fibrosis. The transforming growth factor β1(TGF-β1) plays a key role in regulating tissue repair and remodelling after injury. Connective tissue growth factor (CTGF),a downstream mediator of TGF-β1 inducing fibrosis, has been implicated in peritoneal fibrosis. Vascular endothelial growth factor (VEGF) plays a key role in angiogenesis that can hasten peritoneal fibrosis. In this study, we investigated the effect of small interfering RNA (siRNA) of CTGF by pRETRO-SUPER (PRS) retrovirus vector on the expression of CTGF and VEGF in human peritoneal mesothelial cells.Methods Retrovirus producing CTGF siRNA were constructed from the inverted oligonucleotides and transferred into packaging cell line PT67 with lipofectamine, and the virus supernatant was used to infect human peritoneal mesothelial cell (HPMC). The cells were divided into seven groups: low glucose DMEM, low glucose DMEM + TGF-β1 5 ng/ml, low glucose DMEM + TGF-β1 5 ng/ml + PRS-CTGF-siRNA1-4 and low glucose DMEM + TGF-β1 5 ng/ml + PRS. The expression of CTGF and VEGF were measured by semiquantitative RT-PCR and Western blot.Results Low levels of CTGF and VEGF were detected in confluent HPMCs. Following stimulation with TGF-β1, the levels of CTGF and VEGF were significantly upregulated (P<0.01). Introduction of PRS-CTGF-siRNA1-4 resulted in the significant reduction of CTGF mRNA and protein, and VEGF mRNA (P<0.01), especially in groups PRS-CTGF-siRNA1 and PRS-CTGF-siRNA4. The introduction of PRS void vector did not have these effects (P>0.05).Conclusions The expression of CTGF siRNA mediated by PRS retrovirus vector can effectively reduce the level of CTGF and VEGF induced by TGF-β1 in cultured HPMCs. This study may provide potential therapeutic strategies to prevent the peritoneal fibrosis.