论文部分内容阅读
基于自适应傅里叶分解(AFD)算法,将滚动轴承的振动信号分解为一系列单一分量信号并计算它们的峭度;将峭度由大到小顺序排列,自适应寻找峭度趋于稳定的拐点,对拐点前的单一分量信号求和并取包络作共振解调;根据解调得到的频谱判断滚动轴承是否发生故障及发生故障的部位。以N205EM型滚动轴承为例进行试验验证,结果表明:在不预先确定滤波频带,不出现无物理意义的“负频”情形下,能够准确有效地提取出比传统共振解调方法有更好频谱特征的滚动轴承故障信息,从而有效地诊断出滚动轴承的故障。