【摘 要】
:
为了提高移动机器人的定位精度,提出一种双目视觉与惯导融合的视觉SLAM算法。在视觉SLAM前端部分,为了保持直接法计算速度快及特征法精度高的特点,提出一种融合直接法和特征法的半直接法双目视觉里程计。在后端优化阶段,将视觉数据与IMU数据相互融合,在滑动窗口中以非线性优化的方式构建误差函数,优化位姿计算精度。在EuRoc数据集中对本文提出的算法进行试验验证。结果表明,与开源的视觉惯导融合的SLAM系
论文部分内容阅读
为了提高移动机器人的定位精度,提出一种双目视觉与惯导融合的视觉SLAM算法。在视觉SLAM前端部分,为了保持直接法计算速度快及特征法精度高的特点,提出一种融合直接法和特征法的半直接法双目视觉里程计。在后端优化阶段,将视觉数据与IMU数据相互融合,在滑动窗口中以非线性优化的方式构建误差函数,优化位姿计算精度。在EuRoc数据集中对本文提出的算法进行试验验证。结果表明,与开源的视觉惯导融合的SLAM系统OKVIS、ROVIO和VINS-Mono相比,本文系统在Machine Hall与Vicon Roo
其他文献
针对现有方法在较稀疏的16线激光雷达数据中提取道路边界点准确度较低的问题,本文提出一种道路空间特征与测量距离相结合的道路边界点提取方法:采用随机采样一致性(RANSAC)算法进行预处理,快速剔除道路区域外点;判断同条激光线中点与点之间的水平连续性和垂直连续性,去除大部分道路表面点;根据道路边界点的测量模型,结合原始测量距离修正保留的道路边界点,初步剔除非道路边界点;通过判断起始于被保留点的两个水平
自动驾驶车辆的自动化驾驶程度越高,对高精地图的要求越高。智能化的高精地图能够为L5级别自动驾驶车辆提供所需地图数据,是未来高精地图发展的重要方向。基于目前高精地图的构建方法,本文首先提出多智能体协同高精地图构建的定义,分析其构建框架。然后,对多智能体数据采集路径规划、多源异构一体化数据融合与表达、道路场景认知、智能高精地图融合、智能高精地图更新等关键技术进行了研究,提出了可行的技术方案。最后,分析
交叉口是构成道路网络的基础与核心要素,起到了连接道路和承载转向的重要作用。在城市路网中,交叉口不仅数量众多、形态多样,而且结构复杂、大小不一。单一数据源对于道路交叉口的描述能力有限,难以做到道路交叉口的全面、精确识别。为此,本文设计了一种从车辆轨迹与遥感影像中识别道路交叉口的多元集成方法。首先,集成形态学处理、密度峰值聚类与张量投票提取种子交叉口,将其作为小样本集;然后,据此采用协同训练机制,分别
环境感知与导航定位是深空探测车自动驾驶的核心技术,由于深空环境的特殊性,深空探测车的环境感知与导航定位与地球上汽车自动驾驶的相应技术相比面临独特的挑战。本文从实际工程应用和科研进展两个角度总结了深空探测车环境感知、视觉定位、路径规划等关键技术的进展,并对未来深空探测车智能感知与长距离导航定位等发展方向进行了探讨与展望。
在自动驾驶场景中,视觉相机能够实现低成本的定位与环境感知,但是场景中的动态目标会影响视觉定位的轨迹。对此,本文提出了语素关联约束的动态环境视觉定位优化方法。首先,利用目标检测和语义分割提取环境中的语义实体;然后,通过语素关联模型识别出动态语素;最后,建立动态语素的特征掩膜,用于特征匹配过程中的动态目标特征点过滤,从而提高视觉定位效果。本文基于视觉机器人平台在校园道路开展了试验,发现了动态目标通过关
城市环境中的行道树、车辆、杆状交通设施是重要的交通地物,也是智能交通,导航与位置服务,自动驾驶和高精地图等行业应用的核心要素。为了准确识别这些路侧目标,本文提出一种融合点云和多视角图像的深度学习模型PGVNet(point-group-view network),充分利用目标点云数据中空间几何信息及其多视角图像中高级全局特征提升路侧行道树、车辆和杆状设施的分类精度。为了减少视图间的冗余信息并增强显
基于激光同时定位与地图构建(simultaneous localization and mapping, SLAM)技术,不仅能够实现车辆在未知环境下的实时定位,还能高效地获取环境的三维地理空间信息,近年来受到了无人驾驶领域的广泛关注。在几何结构匮乏的隧道中,仅依赖几何信息无法配准点云,因此传统激光SLAM方法难以在隧道中应用。为解决这一问题,本文在LOAM的基础上,提出一种点云强度信息增强的改进
针对地下停车场环境GPS信号缺失的问题,本文在环视特征地图构建的基础上,提出基于二阶马尔科夫模型的粒子滤波定位算法(Markov model-particle filter, MM-PF),实现智能车在地下停车场环境中的高精度定位。在该模型中,环视特征地图节点被定义为粒子,查询图像被定义为观测数据。在状态转移过程中,引入二阶马尔可夫模型,对短时间车辆运动进行建模,构建状态转移模型。利用图像的全局特
驾驶场景的视觉显著性建模是智能驾驶的重要研究方向。现有的静态和虚拟场景的视觉显著性建模方法不能适应真实驾驶环境下道路场景实时性、动态性和任务驱动特性。构建真实驾驶环境的动态场景视觉显著性模型是目前研究的挑战。从驾驶环境的特点与驾驶员的视觉认知规律出发,本文提取道路场景的低级视觉特征、高级视觉特征和动态视觉特征,并结合速度和道路曲率两个重要影响因素,建立了多特征逻辑回归模型(logistic reg
针对机器人在室内大范围场景中定位初始化技术难题,提出一种基于特征模式的定位初始化方法。首先,结合室内场景结构特征分析,探索场景中具有空间位置标示功能的稳定人工构筑物如墙壁、柱体等结构及结构组合,将其定义为特征模式,以提高场景特征表达稳健性。其次,结合多线激光雷达数据特点,提出实时数据的特征模式提取方法,对其分级管理,提高了场景特征表达效率。然后,提出一种半自动化处理方法实现点云地图特征模式提取,并