论文部分内容阅读
在目标跟踪系统中,获得目标的良好表征是确定目标跟踪性能的关键,因此提出一种基于相关滤波和卷积神经网络的目标跟踪算法;该算法首先在各视频场景内预先选定可清晰区分目标外观的参考区域块用以构造训练样本,并构建了两路不完全对称但权值共享的卷积神经网络;该卷积神经网络使得参考区域外目标的输出特征尽可能与参考区域内目标的输出特征相似,以便于获得参考区域内目标的良好表征,并在其中一路加入了相关滤波模块,实现了卷积网络与相关滤波的结合;实验结果验证了该算法的可行性。