论文部分内容阅读
为了解废钢的熔化速度和熔化机理,在250 kg感应炉中进行了热模拟试验。测量熔化速度采用直径为Φ20~Φ50 mm的Q235圆钢,熔池温度为1 300、1 400和1 600℃。根据试棒直径不同确定在熔池中浸泡时间。根据钢棒浸泡前后的质量和尺寸差别,计算出熔池为1 300、1 400和1 600℃时,其质量熔化速度分别为1.8~4.0、3.5~6.5和12.6 g/s;径向熔化速度为0.012~0.026、0.035~0.045和0.060 mm/s。熔池液体与试棒之间的对流换热系数在1 400℃时为32 931 W/(m~2·℃),1 600℃时为32 884 W/(m~2·℃)。在温度为1 300℃时,碳在液体与试棒之间的对流传质系数为6.3×10~(-5)m/s,温度为1 400℃时为6.4×10-5m/s。热模拟试验所测得的钢棒熔化速度、液-固相之间的对流换热系数、碳的对流传质系数都与国外冶金工作者的试验结果相近,可以作为炼钢生产中计算废钢熔化的基础数据。
To understand the melting rate and melting mechanism of the scrap, a thermal simulation test was performed in a 250 kg induction furnace. The measurement of the melting rate was made of Q235 round bar with a diameter of Φ20 ~ Φ50 mm. The bath temperature was 1 300, 1 400 and 1 600 ℃. According to the test rod diameter to determine the immersion time in the pool. According to the difference of mass and size before and after steepening, the mass melting rates of molten pool at 1 300, 1 400 and 1 600 ℃ were 1.8 ~ 4.0, 3.5 ~ 6.5 and 12.6 g / s, respectively. The radial melting velocity 0.012 ~ 0.026, 0.035 ~ 0.045 and 0.060 mm / s. The convection heat transfer coefficient between the molten pool and the test rod was 32 931 W / (m ~ 2 · ℃) at 1 400 ℃ and 32 884 W / (m ~ 2 · ℃) at 1600 ℃. At a temperature of 1300 ℃, the convective mass transfer coefficient of carbon between the liquid and the test rod is 6.3 × 10 ~ (-5) m / s, and the temperature is 1400 ℃, 6.4 × 10-5m / s. Thermal simulation tests measured the melting rate of the steel rod, the convective heat transfer coefficient between the liquid-solid phase and the convective mass transfer coefficient of the carbon, which are similar to the experimental results of foreign metallurgical workers and can be used to calculate the melting of scrap The basic data.