论文部分内容阅读
目标分解是实现极化合成孔径雷达目标分类、检测与识别应用的重要手段。传统方法由于优先对体散射分量进行提取,其体散射能量的高估或二面角散射能量的低估现象较为严重。该文通过引入极化相似度量,基于数据驱动自适应地对基本散射机制的最优匹配模型进行选择。在此基础上,根据极化相似度量确定基本散射机制散射能量提取的优先顺序,并以各阶次剩余矩阵能量非负为约束,最终确定面散射、二面角散射、体散射这3种基本散射机制的能量贡献值。实测数据处理结果及其与光学图像的对比结果表明,该文方法获取的极化目标分解结果优于传统方法,能够准确地