数学思想运用中的路径探索

来源 :文理导航 | 被引量 : 0次 | 上传用户:echo1210
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  研究高中学生的数学思维障碍对于增强高中学生数学教学的针对性和实效性有十分重要的意义。
  
  一、高中学生数学想想的缺失原因
  
  由于高中数学思维障碍产生的原因不尽相同。作为主体的学生的思维习惯、方法也都有所区别,所以,高中数学思维障碍的表现各异,具体的可以概括为:
  1.数学思维的肤浅性:由于学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的去理解,一般的学生仅仅停留在表象的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果。学生在分析和解决数学问题时,往往只顺着事物的发展过程去思考问题,注重由因到果的思维习惯,不注重变换思维的方式,缺乏沿着多方面去探索解决问题的途径和方法。
  2.数学思维的差异性:由于每个学生的数学基础不尽相同,其思维方式也各有特点,因此不同的学生对于同一数学问题的认识、感受也不会完全相同,从而导致学生对数学知识理解的偏颇。这样,学生在解决数学问题时。一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。另一方面学生不知道用所学的数学概念、方法为依据进行分析推理,对一些问题中的结论缺乏多角度的分析和判断,缺乏对自我思维进程的调控,从而造成障碍。
  3.数学思维定势的消极性:由于高中学生已经有相当丰富的解题经验,因此,有些学生往往对自己的某些想法深信不疑,很难使其放弃一些陈旧的解题经验,思维陷入僵化状态,不能根据新的问题的特点作出灵活的反应,常常阻抑更合理有效的思维甚至造成歪曲的认识。
  由此可见,学生数学思维障碍的形成。不仅不利于学生数学思维的进一步发展,而且也不利于学生解决数学问题能力的提高。所以,在平时的数学教学中注重突破学生的数学思维障碍就显得尤为重要。
  
  二、高中学生数学思想困难的突破
  
  1.在高中数学起始教学中,教师必须着重了解和掌握学生的基础知识状况,尤其在讲解新知识时,要严格遵循学生认知发展的阶段性特点,照顾到学生认知水平的个性差异,强调学生的主体意识,发展学生的主动精神,培养学生良好的意志品质;同时要培养学生学习数学的兴趣。兴趣是最好的老师,学生对数学学习有了兴趣,才能产生数学思维的兴奋灶,也就是更大程度地预防学生思维障碍的产生。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标。使学生有一种“跳一跳,就能摸到桃”的感觉。提高学生学好高中数学的信心。每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。
  2.重视数学思想方法的教学,指导学生提高数学意识。数学意识是学生在解决数学问题时对自身行为的选择,它既不是对基础知识的具体应用,也不是对应用能力的评价,数学意识是指学生在面对数学问题时该做什么及怎么做,至于做得好坏,当属技能问题,有时一些技能问题不是学生不懂,而是不知怎么做才合理,有的学生面对数学问题,首先想到的是套那个公式,模仿那道做过的题目求解,对没见过或背景稍微陌生一点的题型便无从下手,无法解决,这是数学意识落后的表现。数学教学中,在强调基础知识的准确性、规范性、熟练程度的同时,我们应该加强数学意识教学,指导学生以意识带动双基,将数学意识渗透到具体问题之中。
  3.诱导学生暴露其原有的思维框架,消除思维定势的消极作用。在高中数学教学中,我们不仅仅是传授数学知识,培养学生的思维能力也应是我们的教学活动中相当重要的一部分。而诱导学生暴露其原有的思维框架,包括结论、例证、推论等对于突破学生的数学思维障碍会起到极其重要的作用。
  例如:在学习了“函数的奇偶性”后,学生在判断函数的奇偶性时常忽视定义域问题,为此我们可设计如下问题:判断函数在区间[2-6,2a]上的奇偶性。不少学生由f(-x)=-f(x)立即得到f(x)为奇函数。教师设问:①区间[2-6,2a]有什么意义?②y=x2一定是偶函数吗?通过对这两个问题的思考学生意识到函数只有在a=2或a=1即定义域关于原点对称时才是奇函数。
  使学生暴露观点的方法很多。例如,教师可以与学生谈心的方法,可以用精心设计的诊断性题目。事先了解学生可能产生的错误想法,要运用延迟评价的原则,即待所有学生的观点充分暴露后,再提出矛盾,以免暴露不完全。解决不彻底。有时也可以设置疑难,展开讨论,疑难问题引人深思。选择学生不易理解的概念,不能正确运用的知识或容易混淆的问题让学生讨论,从错误中引出正确的结论,这样学生的印象特别深刻。而且通过暴露学生的思维过程,能消除消极的思维定势在解题中的影响。
  当然,为了消除学生在思维活动中只会“按部就班”的倾向,在教学中还应鼓励学生进行求异思维活动,培养学生善于思考、独立思考的方法,不满足于用常规方法取得正确答案,而是多尝试、探索最简单、最好的方法解决问题的习惯,发展思维的创造性也是突破学生思维障碍的一条有效途径。当前,素质教育已经向我们传统的高中数学教学提出了更高的要求。但只要我们坚持以学生为主体,以培养学生的思维发展为己任,则势必会提高高中学生数学教学质量,摆脱题海战术,真正减轻学生学习数学的负担,从而为提高高中学生的整体素质作出我们数学教师应有的贡献。
其他文献
目的探讨经导管动脉化疗栓塞术(TACE)前后患者血流灌注参数及其临床价值。方法将2010年2月至2015年10月西安市第九医院收治的中晚期原发性肝癌患者108例作为研究对象,所有患者
美国珀丢大学工程师通过数学模拟证实,一定几何形状的纳米级天线有可能制作出用以探测单个化学和生物战剂分子的探头。模拟使用的纳米天线是用约10nm厚的金属线和球面制作的。
缺血性脑血管病;黾栓子随血液流动堵塞直径较小的动脉所导致。经颅多普勒超声(TCD)能动态监测动脉血流中的栓子,广泛应用于动脉血流及侧支循环建立的检查。该文旨在探讨经颅多普
对4H-SiC MESFET的特性研究发现,在室温下4H-SiC MESFET饱和漏电流的值为0.75A/mm,随着温度的上升,器件的饱和漏电流和跨导一直下降;栅长越短,沟道层掺杂浓度越高,饱和漏电流
通过分析公共图书馆阅读现状,对现代阅读方式和传统阅读方式进行了比较,就读者服务工作如何适应当前的阅读方式进行了探讨。
绿色不仅代表着无私的爱,还象征着青春活力和无限朝气。如果没有春风般唤醒,有的绿就会变黄而枯萎。   ——题记