双参数任意四边形非协调板元的构造及收敛性分析

来源 :应用数学 | 被引量 : 0次 | 上传用户:xing_h0576
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文利用双参数有限元方法[1]构造出十二参和十三参任意四边形板元,并对其收敛性进行分析证明.
其他文献
本文研究了随机游走和离散的倒向随机微分方程.把随机游走到布朗运动的收敛推广到L2情形;而且根据倒向随机微分方程的理论框架研究了离散的倒向随机微分方程,得到了离散的倒
信号的采样问题,就是探讨采样集满足什么条件时,能够重建信号,如何重建信号.对于f(x)∈L2(R),这里证明了,当采样集满足一定的条件时,适当选择小波基,可以重建信号,并且考虑了
为检验两个分布的相等,我们给出基于投影寻踪、Bootstrap方法和数论方法的统计量,并讨论它的极限分布和Bootstrap逼近.最后我们给出一些模拟.
讨论了具有离散参数的马氏环境中马氏链的强大数定律,并给出了加在链和过程样本函数上的充分条件.同时深入研究了Rθ-链,得到马氏环境中马氏链强大数定律成立的充分条件.
本文研究Banach空间中增生算子方程的Ishikawa迭代法收敛率估计.本文所得结果在以下方面改进和推广了刘理蔚的结果(Nonlinear Anal.42(2)(2000),271~276):(1)以假设{an},{βn}
本文证明了de Sitter空间中具平行平均曲率向量的完备类空子流形在其第二基本形式模长平方S<2√n-lc时是全脐子流形.
M为紧致n维Riemann流形,Ricci曲率具有正下界n一1,d是M的直径,本文证明了其Laplace算子的第一特征值λ1≥π2/d2+n-1/2.
本文引进了随机广义内向映射的随机不动点指数,利用该不动点指数我们得到了一些新的随机小动点定理,并给出了其一个应用.