论文部分内容阅读
目前与文本无关的话者确认系统大都是基于GMM-UBM模型结构的,为了精确的描述说话人语音特征空间的分布,模型混合度M通常都选的很大,因而模型训练需要大量的语音数据。本文提出了一种基于分段估计概率分布函数的规整方法,在概率分布的意义上降低特征参数偏离高斯分布的程度,从而可以用较低混合度的高斯混合模型对其建模。同时,这种映射也是一种无监督规整,因此可以提高系统的鲁棒性及其确认性能。在NIST’03数据库上的实验表明,在使用相同混合度模型的情况下,概率分布规整后的参数相对于变换前的参数系统性能可以提高11%左右